This integral is speaking VOLUMES! Doing the triple Gaussian using spherical and polar coordinates

Поділитися
Вставка
  • Опубліковано 29 лис 2024

КОМЕНТАРІ • 204

  • @anegativecoconut4940
    @anegativecoconut4940 6 років тому +182

    Oh baby, a triple!

    • @gnikola2013
      @gnikola2013 6 років тому +1

      Thomas Torrone ah, yes. The T R I P L E one

  • @sofianeafra6161
    @sofianeafra6161 5 років тому +8

    In 1 minute : we can distribute the power to get e^-x²-y²-z² then distribute the integral to get 3 Gaussian integrals sometimes with respect to x sometimes with respect to y sometimes with respect to z and we know that the Gaussian integral is evaluated to √π then we multiple the product of this 3 integrals and finally we get √π×√π×√π equal to π√π = √π³=π^3/2 and we're done 🔥

  • @blairkilszombies
    @blairkilszombies 6 років тому +340

    Good. Now do it for arbitrary dimensions.

    • @dandan9273
      @dandan9273 6 років тому +50

      The result would just be sqrt(pi)^n

    • @ianprado1488
      @ianprado1488 6 років тому +46

      Answer probably equals C*pi^(dimension/2)

    • @alexpotts6520
      @alexpotts6520 6 років тому +98

      The thing is... this integral is actually separable, because e^-(x^2+y^2+z^2) = e^-x^2 * e^-y^2 * e^-z^2.
      So really this is just the product of three identical Gaussian integrals. The answer is going to be the value of the 1-D Gaussian integral (which is sqrt(pi)), cubed.
      It's now incredibly straightforward to generalise to any number of dimensions.

    • @ianprado1488
      @ianprado1488 6 років тому +15

      en.wikipedia.org/wiki/Gaussian_integral#n-dimensional_and_functional_generalization

    • @Ricocossa1
      @Ricocossa1 6 років тому +8

      There's a neat formula for the (n-1)-surface of a n-ball involving the gamma function. You can do it. The function e^r^2 is isotropic, so you'll just have (n-1)-surface x int( r^(n-1) e^-r^2 ).
      So the problem is equivalent to computing that last integral for any power of n. (Hint: use integration by parts).

  • @jibran8410
    @jibran8410 6 років тому +91

    Correct me if I'm wrong but isn't this just the I^3 for the normal gaussian integral I? so therefore it's sqrt(Pi)^3

    • @soldenstoll8495
      @soldenstoll8495 5 років тому +16

      That is how I went about solving this and it yielded the same answer

    • @nishatmunshi4672
      @nishatmunshi4672 3 роки тому +2

      It blew my mind

  • @4919abcd
    @4919abcd 6 років тому +2

    hello!I am a student of department of chemistry from Taiwan. I am very glad that there is a channel talking about Calculus on UA-cam.

  • @shaqramento3238
    @shaqramento3238 6 років тому +170

    I reported this for pornographic content😍

  • @SeyseDK
    @SeyseDK 6 років тому +21

    the best part isn't how the 4's cancel out! It's deffenietely your methos for the Gaussian integral, finding the double derivative was awesome, gj

    • @azzteke
      @azzteke 6 років тому

      Learn English!

  • @joansgf7515
    @joansgf7515 Рік тому

    For the integarahl int_0^infty r^2 *e^(-r^2)dr, it is straightforward to solve it introducing a parameter t in the gaussian integral: int_0^infty e^(-t*r^2)dr which by doing substitution (r->sqrt(t)r) we get 1/sqrt(t) int_0^infty e^(-r^2)dr=(1/2)*sqrt(pi/t). Now, differentiating the parametric integral and (1/2)*sqrt(pi/t) wrt t we get that int_0^infty r^2 *e^(-t*r^2)dr=sqrt(pi)/(4*t^(3/2)) and evaluating at t=1 we get the desired result: sqrt(pi)/4.

  • @danielmilyutin9914
    @danielmilyutin9914 6 років тому +3

    I have three alternative thoughts for fun.
    A1. I'd just write that I = J^3 and then obtain J as you did it.
    A2. After spheric part intergation and switch from r^2exp(-r^2) to 1/2*exp(-r^2) observe equation: I = J^3 = pi*J. From which follows J = sqrt(pi).
    A3. One can apply parameter method for int(r^2*exp(-a*r^2)) with parameter a =1 for this case.
    We know that int(exp(-a*r^2),0,inf) = 1/2*sqrt(pi/a). Applying partial differential over "a" we obtain
    int(-r^2*exp(-a*r^2),0, inf)= -1/4*sqrt(pi)/(a)^(3/2). Thus, at a=1: int(r^2*exp(-r^2),0,inf)=1/4*sqrt(pi).
    What does three dot (vertices of triangle) symbol mean?

  • @worldsender9137
    @worldsender9137 6 років тому +2

    Alternatively, if you know some stuff about your gamma function you can do it a little bit faster. After you integrated over the angular components you are left with the radial integral:
    G = \int_0^inf r^2 e^(-r^2) dr
    u := r^2
    du = 2r dr
    G = \int_0^inf u e^(-u) 1/(2 u^(1/2)) du
    G = 1/2 * Gamma(3/2) = 1/2 * (2!)/(4^1 1!) * pi^(1/2) = 1/4 pi^(1/2)
    so you conclude: 4 pi 1/4 pi^(1/2) = pi^(3/2)

  • @davidalexander4505
    @davidalexander4505 6 років тому +22

    I personally enjoyed this video a lot. Please do more multivariable calc, it brings back good memories

  •  5 років тому +9

    For the integral x^2e^(-x^2), it would be simpler using the part integration technique.
    Keep this tip. Your videos are fantastic. Congratulations.

  • @here_4_beer
    @here_4_beer 6 років тому +4

    good one! the r²e^(-r²) integral could be transformed more quickly by using feynman's trick. Just expending the exponent by a parameter e.g. "a" , differentiate for "a" and after drawing the derivative out of the integral set the parameter a=1. However, I liked your ansatz because you figured it out on your own. Well done.

  • @strengthman600
    @strengthman600 5 років тому

    Jens i did the r^2*e^(-r^2) integral slightly different:
    I looked at the functional J(t) = \int_0^\infty e^{-tr^2} dr, and noted that J’(t) = -\int_0^\infty r^2 e^{-tr^2} dr, so -J’(1) is the original integral. With a simple u sub, you can turn J into the Gaussian integral and get that it’s equal to sqrt(π/4t). Therefore J’(t) = -sqrt(pi)/4 * t^(-3/2). Just plugging in 1 and negating gives us sqrt(pi)/4, and if you multiply that by the 4pi you already had you get an answer of pi^3/2 QED

  • @nikhilbhiwandkar8563
    @nikhilbhiwandkar8563 6 років тому

    Integral r^2 e^-r^2 can be done as fellow also by using feynman technique
    Integral e^-ar^2 from 0 to inf=1/2 *sqrt(pi/a)
    differentiate
    integral -r^2 *e^-ar^2 = 1/2 *sqrt(pi) *(-1/2)*(a^-3/2)
    now let a=1
    Integral r^2 *e^-r^2 =1/4 sqrt(pi)
    and we are done

  • @deepakkar2011
    @deepakkar2011 6 років тому +12

    Can you generalize it as the following:
    integral of e ^ -(x1^2 + x2^2 + x3^2 + ... + xn^2) from each xi = -infinity to infinity is pi^(n/2).

  • @LaTortuePGM
    @LaTortuePGM 6 років тому +45

    _w h a t t h e _*_f u c k_*

  • @abdulbasithashraf5480
    @abdulbasithashraf5480 6 років тому +7

    We need more people like you
    Others teach very slowly

  • @ocean_0602
    @ocean_0602 6 років тому +4

    I think it's very important to mention how beautifully drawn your integral signs are

  • @Calcprof
    @Calcprof Рік тому

    The n-dimentional analogue gives an integral whose value is π^(n/2). Easily solved with gamma function integral and the (known, also by gamma function) area of the n-1 dimensional Sphere.

  • @paceypineapple6308
    @paceypineapple6308 6 років тому +17

    Nice anime stuffs my boi, glad to know I'm not the only one xd

  • @torment6425
    @torment6425 6 років тому +4

    never thought id see someone incorporate memes into math and i love it

  • @alejosanchez8006
    @alejosanchez8006 4 роки тому

    The integral of exp(-x^2) from -inf to +inf is equal to sqrt(pi) because exp(-x^2)/sqrt(pi) is the density fct of N(0,1/2).
    And since exp(-(x^2+y^2+z^2))=exp(-x^2)*exp(-y^2)*exp(-z^2), we easily get the result sqrt(pi)^3.

  • @geralln
    @geralln 5 років тому +2

    5:20 can you just drag the diferential operator outside of the integral? I'm wondering because if you justify that you can make this equal to zero because you are diferentiating a constant twice, then diferentiating a constant just once would work too. But you would end up with the integral from 0 to infinity of -2r*e^(-r^2) being equal to zero, wich is false.

  • @turtlellamacow
    @turtlellamacow 6 років тому

    Another approach for the radial part of the integral: let u = r, and dv = re^(-r^2), and integrate by parts (I break it up like this because dv can be integrated easily with another substitution, like t = -r^2). The boundary term vanishes and the other part, quoting the Gaussian integral, gives sqrt(pi)/4; tack on the 4pi from the angular dependence and you're done.
    ...Of course, we might as well just quote the Gaussian integral from the very beginning and cube it, but you knew that :)

  • @mariangg2298
    @mariangg2298 4 роки тому

    You can also use gamma function applying formula gamma(1-x)gamma(x)=pi/sin(pi*x) and replacing x with 1/2

  • @Magic73805
    @Magic73805 6 років тому +15

    Thank you so very much sir.

  • @arielfuxman8868
    @arielfuxman8868 3 роки тому

    4:05 sneaky boi, instead of using integration by parts, he uses clever tricks and Papa Lebnitz

  • @fernandoarturog.m.7348
    @fernandoarturog.m.7348 6 років тому +6

    It seems Smarty Boi hasn’t slept very well lately, you need some rest boi c:

  • @deeptochatterjee532
    @deeptochatterjee532 6 років тому +4

    This seems like something we'd do in my calc III class

  • @gnikola2013
    @gnikola2013 6 років тому +12

    12:50 Are those I see some delicious anime figures?

    • @gnikola2013
      @gnikola2013 6 років тому +1

      Flammable Maths ah I see you're a man of culture as well

    • @gnikola2013
      @gnikola2013 6 років тому

      Flammable Maths do you like anime or do you just collect figures?

  • @sibsbubbles
    @sibsbubbles 5 років тому

    Loved this one! Calc III was sometime ago for me now; you made some of that come back though such as that Jacobian.

  • @zhusan2dui
    @zhusan2dui 6 років тому +3

    multidimensional standard normal distribution

  • @darkosimonovic2896
    @darkosimonovic2896 6 років тому

    I believe that interchange in 5:10 is an improper use of Leibnitz rule. Partial integration would be one way to prove the integral is zero. Another option is to start with exp(-σr^2), then d/dσ could be interchanged with this novel integral.

    • @darkosimonovic2896
      @darkosimonovic2896 6 років тому

      Flammable Maths That was quick. BTW, love your videos.

  • @deeptochatterjee532
    @deeptochatterjee532 6 років тому

    I'm pretty sure d/dx of an integral of f(x) with constant bounds is not equal to the integral of d/dx of the integrand with the same bounds. Otherwise you could say d/dx int (e^x) dx with constant bounds is 0, but the int (d/dx(e^x)) dx with the same bounds is definitely not zero, it would be e^b-e^a if a and b are the bounds.

  • @pythagorasaurusrex9853
    @pythagorasaurusrex9853 5 років тому

    Ich habe mal eben dein Video angesehen und den Beweis selbst durchgeführt. Bis zu ca. 3:40 habe ich das Gleiche wie Du. Aber das was du dann machst, erschien mir zu kompliziert und ich habe mich selbst an die Rechnung gemacht und hatte das Ergebnis VIEL schneller, in dem ich partielle Integration genommen habe.
    Hier ist es:
    Ansatz wie du auch: I=4pi*int(r^2*exp(-r^2,dx,0,inf)
    Zum Integral: Ich benutze partielle Integration und definiere:
    u'=r*exp(-r^2), v=r -> u=-1/2*exp(-r^2), v'=1
    Nach der Regel für partielle Integration int(u'v)=uv-int(uv') folgt durch Einsetzen
    int(r^2*exp(-r^2,dx,0,inf) = -1/2*r*exp(-r^2) (von 0 bis inf) + 1/2*int(exp(-r^2,dx,0,inf)
    Nun zu den beiden Summanden:
    Der erste Summand geht für unendlich gegen 0, denn exp(-r^2) geht schneller gegen 0 als r gegen unendlich geht. Und für r=0 ist das Ergebnis 0.
    -1/2*r*exp(-r^2) (von 0 bis inf) = 0
    Den zweiten Summanden kennen wir schon.. Herr Gauss lässt grüßen: int(exp(-r^2,dx,0,inf)=sqrt(pi)/2. Daraus folgt sofort, dass unser gesuchtes Integral den Wert sqrt(pi)/4 hat. int(r^2*exp(-r^2,dx,0,inf)=sqrt(pi)/4
    Setzen wir nun in die unterbrochene Hauptrechnung ein und wir erhalten:
    I=4pi*sqrt(pi)/4=pi*sqrt(pi)=pi^(3/2).
    Fazit: Ich spare mir die Beobachtung der zweiten Ableitung von exp(-r^2), was ein nicht-intuitiver Trick ist (ich hätte das nicht gesehen, grins), sondern ich gehe "straight forward" ohne Mathe-Trickkiste.
    Ansonsten: Toll gemacht mit einem erstaunlichen Ergebnis :)
    EDIT: Und noch schneller geht es mit Fubini's Regel und dem bekannten Wert des Gauss'schen Integrals int(exp(-x^2) über R)=sqrt(pi)
    int(exp(-(x^2+y^2+z^2),R^3)=int(exp(-x^2),R)*int(exp(-y^2),R),int(exp(-z^2),R)=sqrt(pi)^3

  • @psykp930
    @psykp930 6 років тому +1

    @Flammable Maths I have a question for you my boi, where'd you, bprp, and dr peyam gained your experience? Ur very inspiring to me and I want to know what have you done to acquire this knowledge in math, are you students or teachers? And what university have you done? (I don't know if in your place are called universities, i'm still in an Italian's high school). Thank you!! ❤🐤

  • @michaelgolub2019
    @michaelgolub2019 5 років тому +1

    It was impressive and interesting to apply polar/spherical coordinates, but I wanted just to separate x, y and z and obtain a product of three equal integrals: \int_{-\infty}^\infty e^{-t^2}dt that are \sqrt{\pi}\erf(t)|_{-\infty}^\infty=\sqrt{\pi}(1-(-1))=2\sqrt{\pi}, so the product is the 3-rd power of it: 8\pi^{3/2}. It seems shorter :).

    • @soldenstoll8495
      @soldenstoll8495 5 років тому

      That is the way I would solve it but this makes for a better and more interesting video

  • @karthikrambhatla7465
    @karthikrambhatla7465 6 років тому

    For every 4 min I'm in awe.. very Elegant methods

  • @karthikk5384
    @karthikk5384 6 років тому +4

    instructions unclear lost track at the first step

  • @semiawesomatic6064
    @semiawesomatic6064 6 років тому

    Your handwriting has become much neater.

  • @curiousminds301
    @curiousminds301 6 років тому +5

    How you transformed the integral in spherical form

  • @mwei2806
    @mwei2806 9 місяців тому

    But but but, you can just break up the inside into e^-x^2 * e^-y^2 * e^-z^2 which breaks up into 3 integral mutiplicants which becomes sqrt pi * sqrt pi * sqrt pi

  • @gammaknife167
    @gammaknife167 6 років тому +9

    Can you do a video explaining what Jacobians are? Or otherwise link me to a good source? I understand that obviously the polar transformation requires this other factor to make it work, but I don't understand where you got the expressions from.
    Cool video as per! Please let integration week never end :'(

    • @jackvernian7779
      @jackvernian7779 6 років тому +1

      +Rohan Skatedude
      Jacobian is a modification you do when you change between different coordinate systems.
      For example, an integral of the type int(f(x,y,z)dxdydz) can be transformed into different systems of coordinates
      For example:
      regular to cyllindrical:
      x=p*cos(@)
      y=p*sin(@)
      z=z
      J=
      p є
      @ є
      z є
      then you have to redifine boundaries in terms of @, p^2, and z stays the same.
      Then it looks like this:
      int(J*f(p,@,z)dpd@dz)
      It's a fairly short explanation.
      For spherical system of coordinates transformation and Jacobian look like this:
      x=p*cos(@)*sin(&)
      y=p*cos(@)*sin(&)
      z=p*cos(&)
      J=p^2*sin(&)
      & є
      @ є
      p є
      and then if we substitute it back it'll look like this:
      int(J*f(p,@,&)dpd@d&)
      I wish I could attach an image to illustrate why & goes from 0 to pi and @ from 0 to 2pi, but I'll try to explain to the best of my ability.
      @ defines an angle that goes radially around the sphere.
      & defines an angle which goes from the lowest part of the sphere to the uppermost part of it, hence it's only from 0 to pi.
      p is radius in both cases.

    • @joedude8783
      @joedude8783 6 років тому +1

      I think the most intuitive understanding of the Jacobian results from linear approximations of a multivariable vector function. For example, if I want to integrate multiple integrals in terms of dudv instead of dxdy, where x and y are expressed both as functions of u and v (i.e. x(u,v) and y(u,v)),
      then I can say that at (u0,v0), a good approximation of (x,y) in terms of u and v would be
      x=x(u0,v0)+(u-u0)(dx/du) + (v-v0)(dx/dv)
      y=x(u0,v0)+(u-u0)(dy/du) + (v-v0)(dy/dv)
      Jacobi probably was like wow gee, I can write these two equations neatly with a matrix
      [x]=[x(u0,v0)]+[(dx/du) (dx/dv)][u-u0]
      [y]=[x(u0,v0)]+[(dx/du) (dy/dv)][v-v0]
      Now just like when doing u-substitution for single derivatives, how we can say that x=u, dx=u' du, we can analogously say that
      [x] [(dx/du) (dx/dv)] [u]
      d[y] = [(dx/du) (dy/dv)] d[v]
      This is not rigorously expressed by any means, but it provides some nice intuition. We can then find how much [x,y] changes in total magnitude (in both x and y direction) for a change in [u,v] by taking the determinant of that matrix full of partial derivatives (the jacobian). This makes sense because the determinant says how much a matrix scales area (the product of the eigenvalues). Hope this helps :)

  • @gersantru
    @gersantru 5 років тому

    Nice as allways! Thanks!

  • @anapaulinacabrera
    @anapaulinacabrera 6 років тому +1

    Oh my, that was a pretty original way to solve it, I would have used integration by parts

  • @MaxxTosh
    @MaxxTosh 5 років тому

    Would you be able to do videos on quarternion analysis?

  • @dalitas
    @dalitas 6 років тому

    i got an idea from you solviong the gaussian integral
    i think i solved the int cos^2 by making it into a double integral I^2=int int cos^2 sin^2 since int sin^2=int cos^2 and sub. with u=sin^2 giving the integarl I^2=int int 1/4 du du=>I=sqrt((1/8)sin^4+Csin^2+D)
    is this an alternative answer or have i missued the multiplication when i turned it into a double integral?

  • @ahmedgaafar5369
    @ahmedgaafar5369 6 років тому

    amazing effort and talent

  • @feleous5081
    @feleous5081 3 роки тому

    Well assuming the variables are independant of eachother wouldnt the integrals be seperable resulting in the gaussian integral cubed?

  • @danielkirilov8065
    @danielkirilov8065 6 років тому

    Papa, can you explain why the angle "Feida" is Pi, and the third integrals is from 0 to 2Pi but why 2Pi?

  • @SamuelAndradeGTutos
    @SamuelAndradeGTutos 6 років тому

    Is true that integral in R^n of e^-(x0²+x1²+...+xn²) = π^(n/2)?

  • @jessehammer123
    @jessehammer123 5 років тому

    Hi Papa Flammy,
    I’m a high school junior who hasn’t done volume integrals before, but isn’t it possible to take e^(-(y^2+z^2)) out, as it is a constant with regards to dx, and then do the same for e^-(z^2)? Then you have three integrals of what looks like the same form to me. Is there a reason this wouldn’t work for volume integrals in particular? Thanks a bunch.

  • @wooyoungkim2925
    @wooyoungkim2925 5 років тому

    Wonderful. . . Very clear.

  • @wilhelmunkelbach3040
    @wilhelmunkelbach3040 6 років тому

    don't you need a Maßfactor when you integrate exp(-r²) in Cartesian coordinates?

  • @davidkippy101
    @davidkippy101 6 років тому +1

    You only really had to do integration by parts with r^2e^-r^2 and then solve for the gaussian integral

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому

    Hello Dear 🔥 Flammable Maths 🔥
    At first, thanks for this video.
    And second; I searched but I didn't find anything about Mellin transformations. Do you any video about Mellin transformations or not? If no, please make a video about Mellin transformations (and also Fourier transform).
    Thank you.
    Big Fan.

  • @marcellomarianetti1770
    @marcellomarianetti1770 5 років тому

    That self lifting blackboard ahahah

  • @karolakkolo123
    @karolakkolo123 6 років тому +1

    By seeing the title, I see someone has watched Matt Parker's comedy with toroidal vortices :P

  • @kayeassy
    @kayeassy 6 років тому +3

    Orrr we can really make good use of gamma integral...😬😬
    Nice one though.. love your videos..

  • @howardlam6181
    @howardlam6181 6 років тому

    But can you do integral of (e^-r)/r along only the x axis from 0 to infty?

  • @EpiKaoZ
    @EpiKaoZ 6 років тому

    You are incredible!! Hope you get more subscribers! I'll stay tuned to new videos ^^

  • @gregaizi
    @gregaizi 5 років тому

    I didn't get at all. What you calculated second derivative for? Isn't it obvious that the first derivative taken out of integral would be zero, since it doesn't depend on r any more.

  • @AndroidGamingrepublic555
    @AndroidGamingrepublic555 5 років тому

    I love this mathematics Channel💝

  • @bbblaesing
    @bbblaesing 6 років тому

    Why do you call the r And r^2 the Jacobian? I tried looking it up and it seems to be matrix or tensor related. Does that have to do with the order of the Jacobian used since one was a volume integral and one was an area integral?

  • @zwergnase58
    @zwergnase58 6 років тому

    kann es sein, dass hier nicht die leibniz regel sondern der satz der dominierten konvergenz benötigt wird, da das integral und die ableitung bezüglich der gleichen variable bestimmt werden?

  • @oskarcocks-mccracken1993
    @oskarcocks-mccracken1993 6 років тому

    Try the integral between 1 and -1 of (1-x^4)^1/2It’s an elliptical function

  • @sandeepshastry6647
    @sandeepshastry6647 6 років тому

    Even when we convert it into polar coordinates, we multiply it by extra r term... Can u plz explain that stuff... Your videos are amazing. Even though few concept are new to me but I really understand and admire ur teaching.... Keep up the good work

  • @arturogonzalez6184
    @arturogonzalez6184 6 років тому

    I had a question about Zeno's paradox, more specifically Reimman hypothesis. one of the equations involves an H with a little hat (this thing --> ^) I wanted to know If you knew the name and if this is used when talking about only complex or imaginary numbers or also real numbers

    • @arturogonzalez6184
      @arturogonzalez6184 6 років тому

      I just googled it, and yes it's hamiltonian. Thanks! :)

  • @thephysicistcuber175
    @thephysicistcuber175 6 років тому +1

    Can somebody make/send a link to the sound at 0:04 (no pranks, I don't wanna get sent to 0:04 of this video)

  • @theoreticalphysics3644
    @theoreticalphysics3644 4 роки тому +1

    Bruh, do it the physics way and just use the gauss integral on the back of Griffiths QM.

  • @peterdriscoll4070
    @peterdriscoll4070 6 років тому

    Cool, though I got a bit hung up on the integral of the second derivative exp -r^2. Can you redo that bit please.

  • @karabodibakoane3202
    @karabodibakoane3202 3 роки тому +1

    I like this guy. I've watched some of his videos but I wish he could avoid the use of strong language if you know what I mean.

  • @JustSimplySilly
    @JustSimplySilly 6 років тому

    Brilliant video, very entertaining!

  • @yaboylemon9578
    @yaboylemon9578 6 років тому

    Thats it im getting the gaussian integral tat’d on my arm

  • @ghaiethalwi2575
    @ghaiethalwi2575 6 років тому +1

    I love all your videos... could you please do some videos on arithmetics or geometry... that would be amazing ❤

  • @bludeat7398
    @bludeat7398 6 років тому

    Awesome video i!, thank you very much :D

  • @deemotion
    @deemotion 6 років тому +1

    OMG !!!!! Amazing !

  • @adamzhong4011
    @adamzhong4011 6 років тому

    it will be much easier using the normal distribution property to split the triple integral into individual integration.

  • @sajidrizvi4665
    @sajidrizvi4665 6 років тому

    Hey can you do an integral on my request? Integral of {x}/{1+xy}dxdy from 0 to 1. Prove this to be equal to (1-¥) where ¥ is Euler constant and {} is the fractional part

  • @reydavid7300
    @reydavid7300 6 років тому

    Bro this was great

  • @suriyakhaled6579
    @suriyakhaled6579 6 років тому +1

    Are you a physicist by any chance? You really understand the concepts really well. 😀😀😀😀

    • @suriyakhaled6579
      @suriyakhaled6579 6 років тому

      +Flammable Maths Is there any shortcut to becoming a math expert? I love maths but I really don't do well in exams. How many hours do I need to practise??

  • @wafiklotfallah9951
    @wafiklotfallah9951 5 років тому

    It is not true in general that:
    int_a^b (d/dr)f dr = (d/dr) int_a^b f dr

  • @baby-i9326
    @baby-i9326 4 роки тому

    Can u pls suggest some books on integrals!!!!

  • @twilightknight123
    @twilightknight123 6 років тому

    This may have just been a preference for how you wanted to do it, but isn't there a much easier way to do this 3D gaussian integral? You can just "split up" the integral into a product of three independent gaussian integrals, each resulting in \sqrt{\pi}. Thus your final result is just \sqrt{\pi}^3=(\pi)^{3/2}.

  • @giannispolychronopoulos2680
    @giannispolychronopoulos2680 6 років тому +1

    Couldn’t you have calculated the Gaussian integral and then shown that the one we were looking for is it’s cubic root?

  • @abhisarma7249
    @abhisarma7249 6 років тому

    Why is a triple integral equivalent to volume? If one integral is equivalent to area under a function of 1 var, shouldn’t a double integral be volume under a function of 2 vars?

  • @amineelfardi4311
    @amineelfardi4311 6 років тому

    I enjoy your videos you really know how to do them :)

  • @thomasblackwell9507
    @thomasblackwell9507 5 років тому

    You forgot the potatoes to go with the meat. However, sour kraut will do this time.

  • @karma_kun9833
    @karma_kun9833 2 роки тому

    R^n=(pi)^(n/2)

  • @KnightOromis
    @KnightOromis 6 років тому

    You could have used Fubini Tonelli at the very beginning to get back to 1-D gaussian integral (Which you still have to calculate), but I think it would have been faster. Is there a reason why you chose to do a shperical coordinates change ? Great video otherwise !

  • @matron9936
    @matron9936 5 років тому +1

    (Gaussian Integral=sqrt(π))^3?????

  • @BigDBrian
    @BigDBrian 6 років тому

    if you do it with four variables instead of three, would you get pi^(5/2)?

  • @HormersdorfLP
    @HormersdorfLP 4 роки тому

    So what was that in the beginning, middle and end?

  • @paulg444
    @paulg444 7 місяців тому

    should have explained the ratio of infinitesimal volumes assoc. with the transformation.

  • @kamehamehaDdragon
    @kamehamehaDdragon 6 років тому

    I once saw on another video that triple integrals meant density, is it true?

  • @micayahritchie7158
    @micayahritchie7158 6 років тому

    Isn't that just the gaussian integral for one dimension cubed?

  • @Legacies87
    @Legacies87 6 років тому +1

    Really awesome

  • @李汶灏
    @李汶灏 Рік тому

    X^2+y^2+z^2 should be p^2 not r^2 right?

  • @jameswilson8270
    @jameswilson8270 6 років тому +15

    Your application of Leibniz's Rule is incorrect!

    • @jameswilson8270
      @jameswilson8270 6 років тому +12

      Suppose you have integral of d/dx [x^2]dx from 0 to 1. This is equal to 1. But if you take the derivative operator to the outside, then the value is automatically zero.

    • @thetrickster42
      @thetrickster42 6 років тому +9

      Yeah you're right. It's easy to show that the integral is 0 without this rule anyway. Differentiate once and antiderive, then you're left with a term that vanishes at 0 amd infinity.

    • @here_4_beer
      @here_4_beer 6 років тому

      true words...

    • @here_4_beer
      @here_4_beer 6 років тому +3

      better would be to insert a feynman parameter: de.wikipedia.org/wiki/Feynman-Parameter
      that makes Leibniz redundant at this point.