Destroying the Gaussian Integral using Papa Leibniz and Feynman

Поділитися
Вставка
  • Опубліковано 7 лют 2025
  • Help me create more free content! =)
    / mathable
    Merch :v - teespring.com/...
    www.amazon.com...
    shop.spreadshi...
    Leibniz Rule: • The Leibniz rule for i...
    Fresnel Integrals: • An Insane Approach! Th...
    Some people are accurate and call it using the Leibniz rule, some aren't and are calling it Feynman integration. Neverind that, let's continue Papa Flammy's integral week with a famous one: The Gaussian Integral including a constant in the exponent =)
    2nd Channel: / @rockhardwooddaddy
    --------------------------------------------------------------------------------
    Wanna send me some stuff? lel:
    Postfach 60 06 03
    14406 Potsdam
    Brandenburg
    Germany
    --------------------------------------------------------------------------------
    My Website: www.papaflammy...
    Instagram: / flammablemaths
    Flammy's subreddit: / flammybois
    Twitter: / flammablemaths
    Facebook: / flammablemaths
    Got some time to spare? Make sure to add captions to my videos! =) www.youtube.com...
    Want to know more about me? Watch my QnA! =D • Question and Answer Ti...

КОМЕНТАРІ • 244

  • @moc5541
    @moc5541 3 роки тому +154

    In approximately 1971 I attended a seminar by Feynman on the PCT theorem at UC Berkeley. The auditorium had sliding black boards as in this video except that they were huge and heavy and so they hung from pulleys with one of the boards serving as the counterweight for the other. Feynman, upon sending up one of the boards to write on the other said to the audience "Oh look. I don't have to do any work." Laughter from the all-physicist audience.

  • @CallMetheMusicMan
    @CallMetheMusicMan 6 років тому +15

    I just discovered this channel and I freaking LOVE IT. Flammable Maths is awesome!!!

    • @CallMetheMusicMan
      @CallMetheMusicMan 6 років тому +1

      Flammable Maths enjoying is an understatement! :D

  • @gnikola2013
    @gnikola2013 7 років тому +105

    14:29 This is outrageous

  • @jtbauer3789
    @jtbauer3789 4 роки тому +33

    Gaussian represents some sort of symmetry which in 3-d can be built up by infinitely many slices of "disks". With that, it, no wonder, is somehow related to Pi.

  • @mudkip_btw
    @mudkip_btw 4 роки тому +7

    I like how in these older videos you make a few more mistakes, still the content is great do like it very much! Papa bless

  • @MaksiZockt
    @MaksiZockt 7 років тому +263

    10:41 the best thing to do as a german... xDDD

    • @prydin
      @prydin 7 років тому +20

      DON'T MENTION THE WAR!!!! :)

    • @nathandupont8939
      @nathandupont8939 6 років тому +12

      Godwin point my bois

    • @duckymomo7935
      @duckymomo7935 6 років тому +5

      Maks not C!

    • @yodaadoy2863
      @yodaadoy2863 6 років тому +13

      As a german, and behalf of all Germans
      We will remember this flamy, and so will the wall street journal

  • @galek75
    @galek75 5 років тому +65

    *Sips* Reminds me of the time when Kant tried to destroy traditional metaphysics

    • @emmanueloluga9770
      @emmanueloluga9770 4 роки тому +4

      Hahahha yeah, that was indeed funny.
      More so. I don't think its so much of Kqnt trying to destroy traditional metaphysics than it is him being irresponsible epistemology

  • @gammaknife167
    @gammaknife167 7 років тому +3

    Nothing less than a cool video! Haven't learnt some of these integration techniques yet, so I know how I'm gonna spend this evening!

  • @NoNTr1v1aL
    @NoNTr1v1aL 7 років тому +55

    10:04 mah boi's board has been possessed by Papa's soul.

    • @NoNTr1v1aL
      @NoNTr1v1aL 7 років тому +6

      14:14 OMG that celebrity's name is Sharukh Khan and my mother was his fan and that's why she named me Sharukh. Coincidence? I think not.

  • @divyyy4358
    @divyyy4358 6 років тому +1

    You are a genius. Period. Just shared this video with 5 others

  • @masteryoda1748
    @masteryoda1748 7 років тому +16

    Alright,I wont be going to school now...Watching ur videos is enough

  • @markolazarevic4209
    @markolazarevic4209 7 років тому +2

    Thanks for this video man! Keep going u are the best

  • @ozzyfromspace
    @ozzyfromspace 4 роки тому

    Greetings from America and Africa! Have a Flammable day, bro! 😊🙌🏽🎊

  • @vicenteagost1895
    @vicenteagost1895 4 роки тому +34

    Hi there, dude. Love your vids. At minute 14, what if the parameter "a" is negative? Wouldn't it lead to a non convergent integral? Brilliant! Keep going.

  • @amogh5427
    @amogh5427 4 роки тому +7

    Thank you... It is helpful in solving quantum mechanics problems

  • @stydras3380
    @stydras3380 7 років тому +46

    2:59 the CHEN LUUU!

  • @Fematika
    @Fematika 7 років тому +32

    14:13 Great picture of Dr. Peyam.

  • @yannld9524
    @yannld9524 7 років тому +92

    Ok but it works only if a>0 !!

    • @AlexMinos
      @AlexMinos 7 років тому +19

      Or Re(a)>0

    • @Davidamp
      @Davidamp 4 роки тому +1

      @@aidankwek8340 Integral wont converge in all cases

  • @jenpsakiscousin4589
    @jenpsakiscousin4589 2 роки тому +2

    Mathematics sounds so much better on chalk than a marker board

  • @PseudoMystic
    @PseudoMystic 5 років тому +3

    Subbed and favorited immediately upon seeing "Papa Leibniz". Haven't even watched the video yet and I still can't do calculus.

  • @illumexhisoka6181
    @illumexhisoka6181 2 роки тому +1

    I allays wondered what π have to do with this integral
    The moment i saw Invers tan i felt it
    Thank you very much 🥰
    finally a solution that i can understand
    I am a high school student by the way

  • @abdullahm4830
    @abdullahm4830 4 роки тому +2

    At 7:48
    Don't forget the negative sign my boys!
    Jens : 'My girls' are smart. Only boys need a reminder!
    😂

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому

    *Papa* ...
    I miss you and your Math ....
    Therefore I'm here, because your old videos are still great.
    Thank you *Papa Flammy Mathy* .
    *Papa's Ways, Is The Best* .
    Your Hagoromo Chalk and Your black jacket 😂

  • @bingusiswatching6335
    @bingusiswatching6335 2 роки тому

    i like how it sounds like a youtube apology video in the beginning

  • @sach7762
    @sach7762 4 роки тому +4

    Had to come over here and hand out a like, just because of the title.

  • @hinmatth
    @hinmatth 6 років тому +25

    13:37 This limit, we'll dominate :)

  • @sheeniebeanie2597
    @sheeniebeanie2597 3 роки тому

    i got asked to solve this for an interview and i am going to use this next time i get asked to BLOW SOMEONE'S MIND.

  • @MrAssassins117
    @MrAssassins117 7 років тому

    It must be so fascinating, any dislike in your videos i guess, thats a proof that your channel its a lot useful, fellow :)

  • @gustavosedano294
    @gustavosedano294 7 років тому +10

    Oh my god!!! Gauss could be angry :v.
    Just amazing!

  • @sofianeafra6161
    @sofianeafra6161 5 років тому

    You look angry in the video debut 😂😂 I like you 🔥

  • @ShubhamKumar-on8kz
    @ShubhamKumar-on8kz Рік тому

    I am from india....this concept come so many times in gate exam ...tq brother...🙏🙏

  • @andreapastore4287
    @andreapastore4287 7 років тому +11

    That's some nasty integral

  • @pallavjain6216
    @pallavjain6216 4 роки тому

    If a

  • @harry147ish
    @harry147ish 4 роки тому +13

    PHYSICS STUDENTS: change to polar coordinate plane --> done

  • @Soundillusions94xyz
    @Soundillusions94xyz 7 років тому +13

    I LOVE YOU
    Watching you do this is very satisfying. Where did you learn these techniques? In graduate courses? I'm an engineering student but these techniques are never mentioned in my calculus classes.

    • @srpenguinbr
      @srpenguinbr 7 років тому +5

      I have learned how to solve exponential equations lately. I faced a problem that required a substitution t=2^x and t ended up being negative. Well, no problem, complex numbers helped me and I got the result. My teacher had never heard about such a thing. Note she has a masters degree. Thank you, mathematicians of UA-cam.

    • @SirDerpingston
      @SirDerpingston 6 років тому +2

      where do you find such thorny integrals? I'm looking for some hardcore calculus questions...

    • @michaelboyd8546
      @michaelboyd8546 6 років тому +5

      @@SirDerpingston e^[-(x)^2] is a famous function because 1.) It is the general shape of bell curves used in statistics and 2.) It's integral is non-elementary, which I find pretty interesting

    • @josephgrossenbacher7642
      @josephgrossenbacher7642 5 років тому

      @@PapaFlammy69 , that's the only way to really LEARN , DO & UNDERSTAND maths ... !!! ... & you also 'did well' , so thanks !

    • @polychromaa
      @polychromaa 3 роки тому

      @@SirDerpingston michael penn on yt and this channel have some meaty integrals

  • @user-pn9zm8qg7k
    @user-pn9zm8qg7k 6 років тому +1

    I found the general method, it is more geometric
    it change I(x) to (I(x))^2=I(x)I(x*)=I(x)I(y)=V(x,y)
    so we need to integrate z(x,y)=e^((-a)(x^2+y^2)), plot on 3 dimension
    the integral basically is finding the volume between z(x,y)=e^((-a)(x^2+y^2)) and z(x,y)=0
    we found symmetry around z axis, so we change the coordinate to cylindrical coordinate
    the original integral=z(x,y)dxdy=e^((-a)(x^2+y^2))*dx*dy
    intergral after=z(R,angle)dRd(curve)=e^((-a)R^2)*dR*(Rd(angle))
    the additional R from d(curve) made the integration solvable
    them I(x)=(I(x)I(y))^0.5, solved
    I still like your method more
    Your method is much easier to understand

  • @jmate2321
    @jmate2321 5 років тому +3

    Making a bit complicated but I love your approach ...

  • @amithawanigasooriya5645
    @amithawanigasooriya5645 3 роки тому

    Extremely a mad genius

  • @magnuswootton6181
    @magnuswootton6181 3 роки тому +1

    You know what would actually be good, is if you can use guassian blurs to do filters instead of IIR/FIR if you can just increase the fall off!!!

  • @waldersasytz4274
    @waldersasytz4274 4 роки тому

    you could do it in one action by dividing and multiplying by the root of A and substituting A under the differential

  • @digxx
    @digxx 4 роки тому

    nice approach.

  • @FernandoVinny
    @FernandoVinny 7 років тому +1

    Are you interested only in real/complex analysis? What about Abstract Algebra, Combinatorics, Topology, Number Theory etc...?

  • @dr._rayan2807
    @dr._rayan2807 5 років тому

    why does he feel like crying but resisting it the best he can

  • @SultanLaxeby
    @SultanLaxeby 7 років тому +2

    Don't you have to use uniform convergence in order to interchange integral and limit at 13:25? Because that's not allowed in general. For example, observe the integral from 0 to 1 of n*x^(n-1) dx and let n go to infinity.

  • @SiddiqueSukdiki
    @SiddiqueSukdiki 6 років тому

    i love you papa flammable maths;

  • @isakhammer6558
    @isakhammer6558 6 років тому

    great video!

  • @FernandoVinny
    @FernandoVinny 7 років тому +12

    Man you're so cool and handsome

  • @Czeckie
    @Czeckie 6 років тому

    lol, you approach the problem of interchanging various limiting processes as every professional analyst I know: "just fuck it"

    • @Czeckie
      @Czeckie 6 років тому

      but the video and technique are lit af

  • @Armytechrex
    @Armytechrex 6 років тому +1

    if Gauss revives and sees this bad boi he will get mad indeed :v

  • @gregoryfenn1462
    @gregoryfenn1462 5 років тому +2

    At 2:00, how did we know to square the I(t) integral? Like, trying to solve it, what clues are there that this is a useful step?

  • @tomatrix7525
    @tomatrix7525 3 роки тому

    Lovely stuff

  • @AndDiracisHisProphet
    @AndDiracisHisProphet 7 років тому +25

    Nice picture of Dr Peyam

    • @blackpenredpen
      @blackpenredpen 7 років тому

      AndDiracisHisProphet where?

    • @blackpenredpen
      @blackpenredpen 7 років тому

      AndDiracisHisProphet nvm got it at 14:14

    • @arjjanwalia5939
      @arjjanwalia5939 5 років тому +2

      @@blackpenredpen That's actually the Indian actor Shah Rukh Khan

  • @JanPBtest
    @JanPBtest 4 роки тому

    3:08 There is just one term there equal to exp(-at^2) by the usual fund. thm. of calculus.

  • @dlevi67
    @dlevi67 7 років тому

    1:32 We call that bad boy "you""? OK, if you insist.
    Thanks for the video!

  • @AmusWhite
    @AmusWhite 2 роки тому

    7:30 The u=x/t therefore it is dependent on t, how could you ignore the chain rule in the partial differentiation step?

  • @andromedarobinson777
    @andromedarobinson777 2 роки тому

    Lookin rough, my guy. You doin ok?

  • @kameronshope6637
    @kameronshope6637 5 років тому +16

    This could also be solved for by using the gamma function (a lot easier imo)

  • @IlTrojo
    @IlTrojo 7 років тому +1

    NICE! I only missed what if a

  • @sansamman4619
    @sansamman4619 7 років тому +5

    I know that pi is half a circumference. was he talking about circles?

    • @duckymomo7935
      @duckymomo7935 6 років тому +1

      San Samman a circle is 2pi radians, radians is standardized in the unit circle so it’s just 2pi

  • @eliascaeiro5439
    @eliascaeiro5439 7 років тому +5

    Why tan^{-1}(x)? Why? arctan(x) is so much better ! tan^{-1}x=1/tan(x)=cotan(x) ! Other than that, great video.

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 7 років тому +1

      context, my friend

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 7 років тому +2

      also i think it is important to remember that "to the minus 1" doesn't mean "1 over" but "inverse".
      It just happens that the inverse of simple numbers is also denoted as "1 over"

    • @sansamman4619
      @sansamman4619 7 років тому

      inverses are just weird in trigonometry. go look up:
      pre algebra.
      I'm kidding 😂

  • @Legacies87
    @Legacies87 7 років тому +14

    Wow really awesome

  • @andrewsantopietro3526
    @andrewsantopietro3526 6 років тому +1

    Hey I just wanted to ask about when you are solving for the c value, you don't touch the variable u even though it is dependent on t. As I recall, t is equal to zero, and u is equal to x/t, which would make u undefined. I would just like to ask how it still works even though that part is unresolved.
    Thank you so much for your effort and I'm loving your videos!! There really is a uniqueness to your videos that I don't think I've ever seen except kind of in Faculty of Khan, who is just pure salt and no more.
    This really blew my mind on several levels, so I'll use papa flammy's method every day in my calculus class, referring to it with that name every time because there is no other more beautiful way to describe it.... I don't know how but I'm going to try anyway XD.

  • @fredi1505
    @fredi1505 5 років тому +6

    Me after watching the first episode of Rick and Morty

  • @dannygjk
    @dannygjk 5 років тому +4

    "is nothing else but", is nothing else but, "is just".
    ie. "is nothing else but" simplifies to "is just".
    XD Sorry I couldn't resist a silly joke. :P

  • @anjunakrokus
    @anjunakrokus 5 років тому

    In the beginning of the video you state that a is in the real numbers, but later on you use that the limit of t -> infinity of e^(-at^2) = 0. If a is negative, this does not hold anymore.
    The proof still holds for a>0 of course and it is still beautiful.
    Do correct me if I'm wrong though.

  • @ryanjagpal9457
    @ryanjagpal9457 4 роки тому

    Partial derivative, t and +c: Hey
    Me: Have mercy please
    Them: There is no mercy
    Also the only thing in this that makes sense is dt/dt=1, the rest just makes no sense, sik why calculus was even a thing, like it makes no sense

  • @user-pn9zm8qg7k
    @user-pn9zm8qg7k 6 років тому

    now I know why my professor don't want to proof this in class XD the way is kind of tricky for me, especially the the integral at the last part vanish when t close to infinity. I was like "wait, whaaaat?"

    • @user-pn9zm8qg7k
      @user-pn9zm8qg7k 6 років тому

      Actually, I got a little feedback
      I don't really have too much talent in calculation. So yeah, I ran into a lot of issues in learning.
      The good thing is I would know exactly what it takes for a normal person to understand this kind of proof.
      When I'm trying to understand any proof and analysis, I always struggle in why do this now, why do that now, and somehow it just work out. In this kind of situation, I usually would look the proof several times to find reasons to makes the method make any sense. But sometimes it just really hard to figure it out. But only by doing this I can really apply this method (or even figuring out a method) in other problem.
      My suggestion is make a summary after the derivation, going back and explain why do this now, why do that now. But this might be why watch you derive is better than on textbook. Sorry for bad grammar, English is not my native language. I hope this will help you out:)

  • @user-ic4kq7uu6x
    @user-ic4kq7uu6x 4 роки тому +1

    Is it possible to evaluate integral e^-(x^3) 0 to infinity the same way?

  • @dmitrii.zyrianov
    @dmitrii.zyrianov 7 років тому

    Nice video! Why did you use the same letter (I) for constant and for function?

  • @ゾカリクゾ
    @ゾカリクゾ 6 років тому +1

    This was super cool. However I have a problem:
    You introduced u as x/t and then you treated u as a separate variable, for example, when you took the limit as t goes to infinity.
    Are we allowed to do that? I mean you got to the correct answer, so I suppose there must be some validity in what you have done...

    • @michaelmischko847
      @michaelmischko847 6 років тому

      Dont say that - you easily get correct results from doing wrong maths, so your question is legit. My guess looking at it would be that you got lim t²(u²+1) = lim t² = inf (because lim u²t² = constant) and lim u²+1 = 1 and thats why he doesnt even mention that u = u(t).

  • @ozzyfromspace
    @ozzyfromspace 4 роки тому

    *Link in the description to the corresponding video* 😂😂😂 Yes bro

  • @ΔημητρηςΠαπαγεωργιου-γ2υ

    a belongs to R.Doesn't that mean that when a is negative the integral is not finite?

  • @repressible_operon
    @repressible_operon 4 роки тому

    Hello. I'd like to ask why u was considered a constant at 7:15 when u was defined as x/t. Thank you.

    • @jacobbills5002
      @jacobbills5002 4 роки тому

      Just watch this impressive Math channel ua-cam.com/channels/ZDkxpcvd-T1uR65Feuj5Yg.html

  • @youplaylist6810
    @youplaylist6810 6 років тому

    At 12:00, if we make t = 0, doesn't that mean u = x/0 which isn't allowed?

  • @ChrisChoi123
    @ChrisChoi123 5 років тому

    fellow mathematicians
    fllow mathemacians
    flow mathemains
    flo mathmans
    flo mamans
    flo amas
    fl amas
    flamas
    = flammers

  • @АлександрЮсько-у2д

    Holy, you looked so tired 2 years ago!

  • @a.fleischbender7681
    @a.fleischbender7681 4 роки тому +1

    Shouldn't the domain of a be a>=0? If a∞) doesn't converge, right?

  • @EmissaryOfSmeagol
    @EmissaryOfSmeagol 7 років тому +1

    Papa Bless

  • @bouteilledargile
    @bouteilledargile 7 років тому

    Good morning to you too my flammer

  • @suhailbhat1996
    @suhailbhat1996 4 роки тому

    Area property of Fourier transform doesn't give correct answer for this integral. Why?
    I mean this property, area under the curve of f(t) = F(0).

  • @rexwhitehead8346
    @rexwhitehead8346 4 роки тому +4

    Lord Kelvin's definition of a mathematician:
    Someone to whom Int[-infty, +infty] exp(-x^2) dx = sqrt(PI) is as obvious as 2+2=4.
    (Said before Russell and Whitehead rendered 2+2=4 non-obvious to anyone.)

  • @shersinghsaini8510
    @shersinghsaini8510 4 роки тому

    Papa's way is the best

  • @ShivamChauhan-xe7zi
    @ShivamChauhan-xe7zi 3 роки тому

    Legends only know that he was earlier known to be "Fapable maths"😂😂😂

  • @prakharmathur9453
    @prakharmathur9453 6 років тому

    Brilliance incarnate.

  • @rapidfire9130
    @rapidfire9130 5 років тому

    why is the comments section blocked for the new videos, does any one know???

  • @leonardofigueiredosaraiva9849
    @leonardofigueiredosaraiva9849 2 роки тому

    Can you solve the integral of x².e^2x² dx from -infinite to +infinite?

  • @ChollieD
    @ChollieD 3 роки тому

    Wow, square the original integral (dx dy), switch to polar coords, and this joint is much easier.

  • @nootums
    @nootums 6 років тому +1

    14:14
    Are you a fan?
    Or just used the photo for no reason?

  • @dev02ify
    @dev02ify 7 років тому

    But you still used the squaring trick. How about doing it purely with a parameter and differentiation under the integral?

  • @정구-x2e
    @정구-x2e 5 років тому

    14:16 Did you consider the case which a

  • @احمدفليح-ق7غ
    @احمدفليح-ق7غ 5 років тому

    great .thank you .... is x variable real or complex ?

  • @lpsmouhcine
    @lpsmouhcine 5 років тому

    a must be positif because of the square root

  • @chispun2
    @chispun2 3 роки тому

    What can be done about the quotient of two of them? Like one integrated until 3 and other until 5, or so?

  • @bhagyarathisahoo4844
    @bhagyarathisahoo4844 3 роки тому

    Can you say where is a in graph ?

  • @YourMakingMeNervous
    @YourMakingMeNervous 6 років тому

    I have a question. at 12:00, if we make t = 0, doesn't that mean u = x/0 which isn't allowed?

    • @youplaylist6810
      @youplaylist6810 6 років тому

      Did you ever solve this question? I am having the same problem understanding.
      @flammablemaths @YourMakingMeNervous

    • @moehassan_
      @moehassan_ 2 роки тому

      4 years late but that integral was in terms of x, so we're plugging 0 into x, and t into t.

  • @natepolidoro4565
    @natepolidoro4565 6 років тому +1

    4:10 MY EYEBALLS!!!

  • @quickmath8290
    @quickmath8290 7 років тому +2

    Damn this is awesome. Verstehe nur manche sachen nicht ganz mit dieser Partiellen Ableitung das wurde mir zu schnell aber sonst hammer video. Das liebe ich so an mathe. Richtig komplizierte Integrale und dann so eine schöne Antwort 👍

  • @ambrosesabbat9385
    @ambrosesabbat9385 Рік тому

    a should be different to -1 i think

  • @paulraj7573
    @paulraj7573 6 років тому

    genius papa

  • @rockybond42
    @rockybond42 7 років тому +1

    I've gotta know, what song do you use whenever you introduce the problem?