A new type of functional equation

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 5

  • @bagrobagro675
    @bagrobagro675 2 роки тому

    Good explanation! Understood everything! Thanks!

  • @mohamedmohamedlemine835
    @mohamedmohamedlemine835 Рік тому

    👏👌

  • @angelmendez-rivera351
    @angelmendez-rivera351 Рік тому

    Since y in R+ is unique for all x in R+ such that x·f(y) + y·f(x) =< 2, this means there exists some function g : R+ -> R+ such that y = g(x) for all x in R+. This means that x·f(g(x)) + f(x)·g(x) =< 2 for all x in R+. In other words, the task can be rephrased as: find all f : R+ -> R+ such that there exists some g : R+ -> R+ such that x·(f°g)(x) + (f·g)(x) =< 2 everywhere. Since x > 0, (f°g)(x) + (f·g)(x)/x =< 2/x. I think this is probably helpful.

    • @calimath6701
      @calimath6701  Рік тому

      This is a good way to reformulate the condition. We took a similar approach in our video. Our y_x is equivalent to your g(x).

  • @mannituo4367
    @mannituo4367 2 роки тому

    👍👍👍