This wacky integral has a beautiful result

Поділитися
Вставка
  • Опубліковано 25 лис 2024
  • I think this is an integral that Euler himself would be proud of. Solving it is a pretty wild ride with lots of cool techniques invoked.
    My complex analysis lectures:
    • Complex Analysis Lectures
    Support my work via Patreon:
    / maths505
    You can follow me on Instagram for write ups that come in handy for my videos and DM me in case you need math help:
    ...
    My LinkedIn:
    / kamaal-mirza-86b380252
    Advanced MathWear:
    my-store-ef6c0...
    #math #physics #calculus #complex #analysis #passion #hustle #neverstop #stem #stemeducation #advancedmath #teaching #learning #maths505 #mathematics #mathstagram #integral #integration #differential #equations #trigonometry #tutoring #quantum #advancedmath

КОМЕНТАРІ • 50

  • @justcuzy3673
    @justcuzy3673 4 місяці тому +35

    *pi(e-1), as k sum started at 1 instead of 0.

    • @Spiderp-p1l
      @Spiderp-p1l 4 місяці тому +18

      *thankfully* you're mistaken, he just accidentally wrote a 1 instead of 0(trace back to the double sum)

    • @hizon525
      @hizon525 4 місяці тому +3

      Yeah, happens at 9:49

  • @sadboy4today187
    @sadboy4today187 4 місяці тому +2

    I love watching these videos as they satisfy my math brain needs. Keep up the good work man 👍

  • @xizar0rg
    @xizar0rg 4 місяці тому +10

    So much of "we're on the right track if it looks cool" comes from being able to recognize the patterns, which comes from practice with the patterns. (Also, I'm very sure the author is aware of many integrals where "it looks cool" takes you down the wrong rabbit holes.)

    • @maths_505
      @maths_505  4 місяці тому +9

      I'm making a video related to that concept tomorrow 😭

    • @ericthegreat7805
      @ericthegreat7805 4 місяці тому +1

      Math is just magic

  • @xanterrx9741
    @xanterrx9741 4 місяці тому

    Beautiful Result thanks for making video

  • @CM63_France
    @CM63_France 4 місяці тому

    Hi,
    "ok, cool" : 2:16 , 6:06 , 7:30 , 8:05 ,
    "terribly sorry about that" : 3:06 , 3:51 , 8:23 , 10:21 , 11:16 .

  • @GeoPeron
    @GeoPeron 4 місяці тому +2

    Ah yes, pie, served warm and tasty like some oily maccaroni.

  • @Anonymous-Indian..2003
    @Anonymous-Indian..2003 4 місяці тому +3

    Me used f(z) = eᶻ / (z - 1)
    Contour |z| = 1
    And then find half residue.

  • @julianwang7987
    @julianwang7987 4 місяці тому +4

    At 8:10, sin((2k+1)x)/sin(x) should have equaled 1 + 2 * sum_(n=1)^k{cos(2nx)}

    • @achrafsaadali7459
      @achrafsaadali7459 4 місяці тому

      I was about to comment this mistake as well

    • @thegoofiestgoooberr
      @thegoofiestgoooberr 4 місяці тому +1

      fortunately, the answer was still correct as the term ended up going to zero anyway once the bounds of integration were applied

  • @MrWael1970
    @MrWael1970 4 місяці тому

    Very nice solution, but the result should equal to ((pi*e/2)-1). This is due to starting index variable k from 1. Thank you.

  • @shanmugasundaram9688
    @shanmugasundaram9688 4 місяці тому +1

    There is an error in writing the Dirichelt kernel.But it never changes the result.

  • @slavinojunepri7648
    @slavinojunepri7648 4 місяці тому

    Fantastic

  • @chaosredefined3834
    @chaosredefined3834 4 місяці тому +1

    So, at the end, we still don't know if it's rational or irrational :P

  • @איתיבירנבוים
    @איתיבירנבוים 4 місяці тому +2

    When can you swap the integral operator and the Re/Im operators? because it's not always the same result, I think I saw some examples for this with path integrals...
    By the way, your videos are amazing!

    • @maths_505
      @maths_505  4 місяці тому

      @@איתיבירנבוים oh yeah path integrals are a whole different ball park. For "regular" you'll come across like the ones on my channel, if it doesn't seem divergent, go for the switch up. The actual rigorous approach is dominated convergence.

    • @AnimeshRoy07
      @AnimeshRoy07 4 місяці тому

      ​@@maths_505 Monotone convergence theorem fascinates me so much as it gets rid of complex situations while solving questions.

  • @daveydd
    @daveydd 4 місяці тому +1

    Pretty epic but I'm tired of these answers always having π and e. Maybe you could try also some other interestingly enough integrals that don't follow these typical answerss? Please :D

  • @DaMonster
    @DaMonster 4 місяці тому +1

    I love this stuff but can you tell me - did you just pick all the tricks you wanted to use THEN come up with an integral that could be solved with them?

    • @maths_505
      @maths_505  4 місяці тому

      Nah I don't often do that

  • @sachacloot1925
    @sachacloot1925 4 місяці тому

    i have try the residue theorem on it by substitue e^ix = y, but i can't get the right result i don't know why i always got 2epi it like doing the integrale from 0 to 2pi, i don't understand why it's not working

  • @jayaprakashb1
    @jayaprakashb1 4 місяці тому

    Kamal, can you formulate the tools you use before you start solving ? It gives me an opportunity to attempt on my own first and see how I screwed up in spite of the tips😀😀

  • @jejnsndn
    @jejnsndn 4 місяці тому +1

    4:14 can you substitute sinx by the imaginary part of e^ix ?

    • @daveydd
      @daveydd 4 місяці тому

      Y- No. That's like having an additional imaginary part in the denominator and it wouldn't lead you anywhere.

  • @bingchilling8384
    @bingchilling8384 4 місяці тому

    You should do a video with only black or very dark ink 😂

  • @jagrrr2279
    @jagrrr2279 4 місяці тому

    Very interesting! I have to ask, where do all of these integrals come from?

    • @maths_505
      @maths_505  4 місяці тому

      This one's derived from the 2023 MIT integration bee semi finals. It was an antiderivative problem that I tweaked.

  • @Mr_Mundee
    @Mr_Mundee 4 місяці тому

    can you do this using contour integration? and can you also do z/e^z -1 using contour integration from 0 to infinity

  • @gambitito
    @gambitito 4 місяці тому

    dirichlet kernel is crazy. also the "i" in your imaginary part looks like a 9 ngl

  • @jejnsndn
    @jejnsndn 4 місяці тому +1

    Do you want to share geomtry problems?

    • @maths_505
      @maths_505  4 місяці тому +1

      I'll ask the community if they want to see geometry here too.

  • @mohamadshakarami4258
    @mohamadshakarami4258 4 місяці тому

    How did you write sin[2k+1]x /sinx=.........
    Where can i find a proof?

    • @maths_505
      @maths_505  4 місяці тому

      @@mohamadshakarami4258 Wikipedia

  • @zinzhao8231
    @zinzhao8231 4 місяці тому

    Do you usually check your work before uploading it? 😂

    • @maths_505
      @maths_505  4 місяці тому

      Only the final result in Wolfram alpha 😭

  • @TheNarukman
    @TheNarukman 4 місяці тому

    OK, Cool! ;)

  • @robertsandy3794
    @robertsandy3794 4 місяці тому

    Kept wondering why you didn't change the sin x in the denominator to e^-ix until the end

    • @maths_505
      @maths_505  4 місяці тому

      What da??

    • @robertsandy3794
      @robertsandy3794 4 місяці тому

      ​@@maths_505you changed the sin x in the numerator using Euler's formula such that you got 2 exponentials, one of them being e^ix. Was wondering until the end of the problem why you didn't do that to the denominator

    • @maths_505
      @maths_505  4 місяці тому

      @@robertsandy3794 it's cool happened to me once too 😂

  • @PetroGhost2890
    @PetroGhost2890 4 місяці тому

    Which app do you use?

    • @maths_505
      @maths_505  4 місяці тому

      @@PetroGhost2890 Samsung notes

  • @potatadiggary1125
    @potatadiggary1125 4 місяці тому

    So the answers 9. ~Engineers 😊