inverse sinh(x)

Поділитися
Вставка
  • Опубліковано 23 гру 2024

КОМЕНТАРІ • 137

  • @lanfordvideos
    @lanfordvideos 7 років тому +121

    You, sir, are a brilliant mathematician and an outstanding teacher!

  • @Spectrojamz
    @Spectrojamz 4 роки тому +8

    Coolest Mathematician ever!!!.
    I love you🙇🏽

  • @abdesselambassou3618
    @abdesselambassou3618 5 років тому +5

    For simplification, when b is even (like in this case where b = 2x), I invite you to use b'=b/2 then x=(-b' +- sqrt((b')^2 - a c))/a. Thank you for this amazing video ;-)

  • @rickhoro
    @rickhoro Рік тому +2

    Wow! That was so clearly presented that even with my so-so math ability, it was easy to understand. Thank you!

  • @التعليمالألكتروني-ع7د

    Iam stady from IRAQ... 😘 اتابعك من 🇮🇶

  • @ABHISHEKKUMAR-02048
    @ABHISHEKKUMAR-02048 5 років тому

    Let y = sinh inverse x
    Clearly - infinity < y < infinity
    Then sinhy = x
    Now coshy = + sqrt (1 + (sinhy)^2)
    (since coshy is > 1 or = 1 therefore coshy is always > 0
    for all y belongs to R )
    => coshy = sqrt (1 + x^2)
    Now coshy + sinhy = e^y
    => sqrt (1 + x^2) + x = e^y
    => e^y = x + sqrt (1 + x^2)
    => y = ln (x + sqrt (1 + x^2) )
    Hence we conclude that
    y = sinh inverse x = ln (x + sqrt (1 + x^2) )

  • @abdullahdoush3653
    @abdullahdoush3653 6 років тому +28

    U saved my life
    :))

  • @peggyfranzen6159
    @peggyfranzen6159 6 років тому +8

    Wow!:" The 'Yan Can Cook of Calculus!" Awesome Thank you.

  • @arinzeanthony7447
    @arinzeanthony7447 7 місяців тому

    You are simply the best, no questions.

  • @Kraghinkoff
    @Kraghinkoff 6 років тому

    At 3:33 you could add +x^2-x^2 so that you would get (e^y-x)^2-x^2-1=0 and then solve for y which in my opinion feels more natural

  • @chaol9555
    @chaol9555 6 років тому +4

    this was so helpful and clear thank you! :)

  • @miatia9614
    @miatia9614 3 роки тому

    Finally,i understand this topic..thank you so much sir!

  • @raghavendraPi
    @raghavendraPi Місяць тому

    Love you bro 🌟, excellent teacher you are!

  • @georgesadler7830
    @georgesadler7830 2 роки тому

    Thank you for an outstanding video/lecture on the Inverse Sinh(x).

  • @jkgan4952
    @jkgan4952 2 роки тому

    Thank you! Just what I was looking for!

  • @andraspatyi7706
    @andraspatyi7706 Рік тому

    That was really helpful it just didn't come to my mind that it is a quadratic equation and I just couldn't figure it out

  • @arifkarim768
    @arifkarim768 4 роки тому

    You, Sir, are incredible. You have my out most gratitude

  • @sankalpkumar1999
    @sankalpkumar1999 5 років тому +2

    You r great sir.
    I have a question that how can be draw the graph of ln(x+sqrt(x^2+16))
    Is this function is similar to inverse sine hyperbolic or not???
    Please answer🙏🙏

  • @gautamkumarsingh2010
    @gautamkumarsingh2010 3 роки тому

    Outstanding explanation sirjiii

  • @osagieobehe5566
    @osagieobehe5566 Рік тому

    Please what do u mean by negative 2x in the rot is equal to 4x square

  • @caesarlaelintang4074
    @caesarlaelintang4074 6 років тому

    Thank you veryy much. It is really helping me to face final exam

  • @upmperthay
    @upmperthay 7 років тому +1

    You're a MEGA trip!! X-D
    Thanks!!
    Hove you done conversions from sine to sinh & tangent to tanh?

  • @muhammadnaufalzaky1326
    @muhammadnaufalzaky1326 5 років тому

    are you have the vidoo on your playlist for expression for the invers trigonometric function??

  • @infotuto
    @infotuto 3 роки тому

    Hello, How can i transform u=exp(x/A)*C1*A - exp(-x/A)*c2*A (wich verify u''= u (second derivate) = 1/A^2 * u to u = sinh((x-c1)/A) (wich verify as the same way : u''= u (second derivate) = 1/A^2 * u?

  • @halahadam4129
    @halahadam4129 5 років тому

    I never write comments but I had to for this! Your method is so clear and you explained everything very well, thank you for such a great watch!!

  • @mzain9431
    @mzain9431 6 років тому +1

    make it easy and i got it very well Thanks !

  • @ensariskin
    @ensariskin 6 років тому

    Perfect video. Thanks a lot 👍🏽

  • @smitapaul_maths
    @smitapaul_maths 4 роки тому

    Thanks you so much sir for such an informative video 😇❤️

  • @monara97
    @monara97 4 роки тому

    You sir, an outstanding teacher!

  • @parvezahmedmahtam6435
    @parvezahmedmahtam6435 3 роки тому

    Great work sir ! thanks a lot of you sir !

  • @Heyitsmenazz
    @Heyitsmenazz 5 років тому

    I don't understand how that (e^(y)) becomes equal to the quadratic function. Is it because U= quadratic Function ?

    • @darthsion3844
      @darthsion3844 5 років тому +1

      It's because of the way the equation is structured. e^y is the unknown variable, and it's inside of a 3 term polynomial set equal to zero. In the first term, it's 1*our unknown variable where our unknown variable is squared, and in the second term, it's -2x*e^y, without the square. The third term is simply a constant. It's essentially structured like the standard form of quadratic equation that would allow it to be solved with the quadratic formula, it doesn't matter whether or not the unknown variable we're solving is x, u, theta, t, or even e^y.

  • @felliciakim7456
    @felliciakim7456 5 років тому

    Great solution 😃 it helps me to do my homework... Thanks 🙏

    • @ilyassalmon9513
      @ilyassalmon9513 5 років тому

      it is my homework too
      does all of the teacher in the world give the same homework
      is it impossible ?

  • @maxxvict2571
    @maxxvict2571 6 років тому

    Thanks sir..... you're a brilliant young man #genius

  • @KHYu-qp6vo
    @KHYu-qp6vo 6 років тому

    very clear, helped a lot, thank you

  • @thb3915
    @thb3915 4 роки тому

    Thank you so much dear

  • @MohammedHasmi577
    @MohammedHasmi577 4 роки тому

    Tq so much sir i am from India 🇮🇳

  • @shadon_official2510
    @shadon_official2510 5 років тому

    Hey, I’m just curious. Did you study math? And if you did, what addict of math did you focus on?

  • @shivandongha822
    @shivandongha822 4 роки тому +1

    l love ur vidz

  • @kassiaaretaki8859
    @kassiaaretaki8859 6 років тому +2

    how do we know that sinh x though is 1 to 1?
    great video thank you!

  • @AlgyCuber
    @AlgyCuber 6 років тому +5

    why do we write inverse trigs as ^-1? i think they can be interpreted as sin^-1 = csc, etc
    we can just use arcsin, etc

    • @blackpenredpen
      @blackpenredpen  6 років тому +4

      It's just a standard notation.

    • @AlgyCuber
      @AlgyCuber 6 років тому

      for people who don't know

    • @AlgyCuber
      @AlgyCuber 6 років тому +2

      like sin^2 x is (sin x)^2 but sin^-1 x is *not* 1/sin x

    • @avananana
      @avananana 6 років тому +2

      How is it confusing? It's always been taught like that and you basically get introduced to it before you even know that sin^2(x) is a thing. Standard notation that has been used for decades if not centuries.

    • @jackauchterlounie3879
      @jackauchterlounie3879 6 років тому +3

      because it just isn't consistent with anything else?

  • @tz1743
    @tz1743 4 роки тому

    THANK YOU SO MUCH!

  • @thenephilimforreal
    @thenephilimforreal 4 роки тому

    Is it really a quadratic equation because of - 1??

  • @Cannongabang
    @Cannongabang 7 років тому +1

    Aside from the fact that you assume the existance of the inverse before finding it, it is always cool to derive the inverse :)

    • @Koisheep
      @Koisheep 6 років тому +1

      Cannongabang It's a widespread method in algebra actually. If you find a well-defined function g such as f(g(x))=x=g(f(x)), g is automatically f's inverse and f is one-to-one

  • @ny6u
    @ny6u 4 роки тому

    Brilliant 👏🏻👏🏻👏🏻👏🏻👏🏻

  • @nelithawijesooriya4929
    @nelithawijesooriya4929 6 років тому +1

    That was amazing !!! Thank you so much

  • @iankipyegon3528
    @iankipyegon3528 2 роки тому

    What of expressing in log form

  • @Petershd138
    @Petershd138 4 роки тому

    damn! you are a genius

  • @BREAKLESS05
    @BREAKLESS05 Рік тому

    Thank you sir ❤

  • @john-athancrow4169
    @john-athancrow4169 6 років тому

    Witch means sinh(whatever)=(e^whatever-e^-whatever)/2, Isn't it?

  • @James-sb1lq
    @James-sb1lq 5 років тому

    Thank you for the lesson!

  • @elumbraarjay1005
    @elumbraarjay1005 4 роки тому

    Why not consider the minus part despite being negative? I just want a reason why the minus part is not included anymore in finding y

    • @Yadoozz
      @Yadoozz 4 роки тому +1

      This comes from the nature of the exponential function always being positive. Since exp(y) is what we're solving for, the negative solution is not applicable to our problem, and er can ignore it for our purpose.

  • @kigenpeter7571
    @kigenpeter7571 4 роки тому

    excellent......you pronunciation is like brucilee ......i can now kungfu maths exams

  • @sargebeats
    @sargebeats 6 років тому

    you sir are the GOAT

  • @reubenstephen1314
    @reubenstephen1314 2 роки тому

    Thank you so much

  • @mapo2458
    @mapo2458 5 років тому

    Desde Colombia, que genialidad

  • @Yadoozz
    @Yadoozz 4 роки тому

    Great video!

  • @LemanBeats
    @LemanBeats 2 роки тому

    Thank you sir!

  • @يوسف-د1ع8ص
    @يوسف-د1ع8ص 5 років тому

    nice job friend I wish you happy life

  • @johnak4080
    @johnak4080 4 роки тому

    that is very impressive..thank u sir

  • @General12th
    @General12th 7 років тому

    Brilliant expression! So cool!

  • @rot6015
    @rot6015 6 років тому +1

    wow i loved it!!

  • @i_am_anxious02
    @i_am_anxious02 6 років тому

    Nice vid bruh

  • @aditha00
    @aditha00 6 років тому +2

    thank you :0

  • @sichel94sam
    @sichel94sam 7 років тому +1

    love it!

  • @mohamedbak1213
    @mohamedbak1213 4 роки тому

    Danke
    Merci
    Thanks
    شكرا جزيلا

  • @ananyapappula7837
    @ananyapappula7837 2 роки тому

    Thank u so much

  • @syazasyarafina186
    @syazasyarafina186 6 років тому

    thank u sir for sharing, i can understand well ;)

  • @studycircleacademy9556
    @studycircleacademy9556 7 років тому

    thanks alot😍

  • @pulastya09
    @pulastya09 2 роки тому

    Thank you

  • @nelsonmartins8995
    @nelsonmartins8995 5 років тому

    argument of hyperbolic sine

  • @Gesantel
    @Gesantel 7 років тому +2

    this guy's fantastic

  • @chandans5067
    @chandans5067 6 років тому

    Nice work

  • @birkankose6922
    @birkankose6922 5 років тому

    thank youu :D

  • @gaurav.raj.mishra
    @gaurav.raj.mishra 7 років тому

    how do you know that sqrt(x^2+1) is greater than x?

    • @WindsorMason
      @WindsorMason 7 років тому

      Gaurav Mishra sqrt(x^2) is the same magnitude as x growing at the same rate as x's... However for every x you give it, you'll get a number ever so slightly larger than x thanks to that + 1 in there, and. Since they grow at the same rate, x will never be larger than sqrt(x^2 +1)

    • @gaurav.raj.mishra
      @gaurav.raj.mishra 7 років тому

      Thanks

    • @gaurav.raj.mishra
      @gaurav.raj.mishra 7 років тому +1

      Nice to see helpful people on the Internet. Faith in humanity restored.

    • @WindsorMason
      @WindsorMason 7 років тому

      Gaurav Mishra hehe, I know right? The internet is 'obviously' supposed to be a place for mindless bickering and trolling... But we can use it for math and helping people!

    • @deeptochatterjee532
      @deeptochatterjee532 7 років тому

      Gaurav Mishra x=√(x²) so if anything under the square root is larger than that the whole expression is, intuitively larger
      A more rigorous proof may be this:. Assuming the principal root, √(x²)=|x|
      √(x²+1) = √(x²(1+1/x²)) = √(x²)×√(1+1/x²) = |x|√(1+1/x²)
      So, we know the square root of anything greater than one is greater than one since √1=1 and √x is an increasing function, and multiplying a number by something greater than one produces a product larger than the number: mathematically,
      |x|√(1+1/x²)>|x|
      Now, if x is nonnegative, it's trivial that x+√(x²+1) is positive. So we want this for the problem. If x is negative, then the statement I proved before is helpful because it shows that x+√(x²+1) must be positive; if x is non-positive then x+|x| = 0. Now let's assume the negative root. If x is non-positive, it's trivial that x+√(x²+1) (or rather x-√(x²+1) with the principal root) is negative. And if x is nonnegative we use the statement I proved along with the fact that with this x that x-|x| = 0 to show that the expression is again negative.
      Have a nice day

  • @viralim9379
    @viralim9379 3 роки тому

    Thank you sir

  • @tanyungwei9985
    @tanyungwei9985 4 роки тому

    BEST 👍🏻

  • @dharanijena6423
    @dharanijena6423 6 років тому

    Thank you sir.

  • @AAa57295
    @AAa57295 6 років тому

    thanks a lot man

  • @dogagunduz6881
    @dogagunduz6881 2 роки тому

    Great Video but x-√(x^2-1) is not always negativ

  • @rohitiistkerala2273
    @rohitiistkerala2273 4 роки тому

    Thanks bro +

  • @Zehratalakany
    @Zehratalakany 6 років тому

    thank you

  • @py1867
    @py1867 5 років тому

    Thank u math god

  • @anoopchoubey8340
    @anoopchoubey8340 5 років тому

    Thankyou sir

  • @juankrock012
    @juankrock012 6 років тому

    crack ! excellent explication !

  • @Djake3tooth
    @Djake3tooth 3 роки тому

    I tried to do it myself, but instead of writing e^y=x+sqrt(x^2+1) I accidentally took 1 for x

  • @khutsokobela7731
    @khutsokobela7731 6 років тому

    Simply amazing

  • @johnog2478
    @johnog2478 2 роки тому +1

    牛逼

  • @srinivaschowdaryappasani2248
    @srinivaschowdaryappasani2248 6 років тому

    Thanks sir

  • @D4v30r
    @D4v30r 4 роки тому

    Can this be done for arcsin(x), arccos(x) etc?

    • @carultch
      @carultch 10 місяців тому

      Yes, but it requires a detour to complex numbers to do it.
      For arcsine, to find an explicit formula for this one, not using predefined inverse trig, we can recognize the following identity:
      i*sin(y) = sinh(i*y)
      Solve for sin(y):
      sin(y) = -i*sinh(i*y)
      Equate this to x, and solve for y:
      x = sin(y) = -i*sinh(i*y)
      Rewrite sinh(i*y) with its definition:
      x = -i*[e^(i*y) - e^(-i*y)]/2
      Multiply every term by 2*i*e^(i*y):
      2*i*x*e^(i*y) = -i*[e^(2*i*y) - 1]
      Let E = e^(i*y):
      2*i*x*E = E^2 - 1
      Solve for E, with the quadratic formula:
      E = i*x +/- sqrt(1 - x^2)
      Recall that E = e^y
      e^y = i*x +/- sqrt(1 - x^2)
      Take the complex log:
      y = log(i*x +/- sqrt(1 - x^2))
      This is a way to express y=arcsin(x), using arithmetic, powers, and logs. It ultimately will require arctangent to make use of this formula, since complex log needs to work with the magnitude and angle of the input. To get the angle, given cartesian form, you need a 4-quadrant angle resolver arctangent function.

  • @isaacmedina9962
    @isaacmedina9962 Рік тому

    goat

  • @mathcinema3549
    @mathcinema3549 Рік тому

    very nice

  • @fenderbender28
    @fenderbender28 7 років тому

    great video

  • @LUISFARIASPINO
    @LUISFARIASPINO 6 років тому

    Thanks

  • @roeishai
    @roeishai 5 років тому

    and god created infinitesimal calculus, and saw it was hard. and so god said, let there be UA-cam videos, and god saw it was good.

    • @roeishai
      @roeishai 5 років тому

      was about to write god said "let there be Asians", but i figured it will be racist ...

  • @GusTheWolfgang
    @GusTheWolfgang 7 років тому +5

    Lovely

  • @tanaysaha6453
    @tanaysaha6453 7 років тому

    I will be a lot better if you do the arbitrary calculations faster thanks! Really love your work though

  • @fountainovaphilosopher8112
    @fountainovaphilosopher8112 7 років тому +2

    Cool

  • @JohnSmith-iu3fc
    @JohnSmith-iu3fc 5 років тому

    good!!

  • @LearnWithFardin
    @LearnWithFardin 3 роки тому

    ❤️❤️❤️