Japanese | Can You Solve This?? | A Nice Nath Olympiad Algebra Problem | No Calculator Allowed

Поділитися
Вставка
  • Опубліковано 24 лис 2024

КОМЕНТАРІ • 5

  • @PeterArkadiev
    @PeterArkadiev 4 дні тому

    Since both equations are symmetrical, the two "different" solutions are just notational variants

  • @guyhoghton399
    @guyhoghton399 4 дні тому

    Let _(t - √x)(t - √y) = 0_ ... ①
    ⇒ _t² - (√x + √y)t + √(xy) = 0_
    ⇒ _t² - 10t + 10 = 0_
    ⇒ _t = 5 ± √15_
    ⇒ _( t - (5 + √15) )( t - (5 - √15) ) = 0_
    ∴ by comparison with ①:
    _√x = 5 + √15, √y = 5 - √15_ up to symmetry
    ⇒ *_x = 40 + 10√15, y = 40 - 10√15_*

  • @stpat7614
    @stpat7614 4 дні тому

    I did it a different and (unfortunately) longer way.
    sqrt(x) + sqrt(y) = 10
    Since sqrt(x) >= 0, then x >= 0
    Since sqrt(y) >= 0, then y >= 0
    sqrt(xy) = 10
    Since sqrt(xy) > 0, then x > 0 and y > 0
    [sqrt(x) + sqrt(y)]^2 = 10^2
    [sqrt(x)]^2 + [sqrt(y)]^2 + 2*sqrt(x)*sqrt(y) = 100
    x + y + 2*sqrt(xy) = 100
    x + y + 2*sqrt(xy) - x - y = 100 - x - y
    2*sqrt(xy) = 100 - x - y
    2*sqrt(xy)/2 = [100 - x - y]/2
    sqrt(xy) = [100 - x - y]/2
    [100 - x - y]/2 = sqrt(xy)
    Since sqrt(xy) = 10, then
    [100 - x - y]/2 = 10
    [100 - x - y]/2*2 = 10*2
    100 - x - y = 20
    -[100 - x - y] = -20
    x + y - 100 = -20
    x + y - 100 - y + 100 = -20 - y + 100
    x = 80 - y
    sqrt(x) + sqrt(y) = 10
    sqrt(x) + sqrt(y) - sqrt(y) = 10 - sqrt(y)
    sqrt(x) = 10 - sqrt(y)
    [sqrt(x)]^2 = [10 - sqrt(y)]^2
    x = 10^2 + [-sqrt(y)]^2 + 2*10*[-sqrt(y)]
    x = 100 + y - 20*sqrt(y)
    100 + y - 20*sqrt(y) = x
    Since x = 80 - y, then
    100 + y - 20*sqrt(y) = 80 - y
    100 + y - 20*sqrt(y) - 80 + y = 80 - y - 80 + y
    20 + 2y - 20*sqrt(y) = 0
    2y - 20*sqrt(y) + 20 = 0
    [2y - 20*sqrt(y) + 20]/2 = 0 / 2
    y - 10*sqrt(y) + 10 = 0
    Let u = sqrt(y), then
    y - 10*sqrt(y) + 10 = u^2 - 10u + 10 = 0
    u = [-(-10) +/- sqrt([-10]^2 - 4*1*10)] / [2*1]
    u = [10 +/- sqrt(100 - 40)] / 2
    u = [10 +/- sqrt(60)] / 2
    u = [10 +/- sqrt(4*15)] / 2
    u = [10 +/- 2*sqrt(15)] / 2
    u = 5 +/- sqrt(15)
    u^2 = [5 +/- sqrt(15)]^2
    u^2 = 5^2 + [+/- sqrt(15)]^2 + 2*5*[+/- sqrt(15)]
    u^2 = 25 + 15 +/- 10*sqrt(15)
    u^2 = 40 +/- 10*sqrt(15)
    Since u = sqrt(y), then
    u^2 = [sqrt(y)]^2 = 40 +/- 10*sqrt(15)
    y = 40 +/- 10*sqrt(15)
    y1 = 40 + 10*sqrt(15) and y2 = 40 - 10*sqrt(15)
    y1 > 0 and y2 > 0
    Since x = 80 - y, then
    x1 = 80 - y1 and x2 = 80 - y2
    x1 = 80 - [40 + 10*sqrt(15)] and x2 = 80 - [40 - 10*sqrt(15)]
    x1 = 80 - 40 - 10*sqrt(15) and x2 = 80 - 40 + 10*sqrt(15)
    x1 = 40 - 10*sqrt(15) and x2 = 40 + 10*sqrt(15)
    x1 > 0 and x2 > 0
    { (x1, y1), (x2, y2) } = { (40 - 10*sqrt[15], 40 + 10*sqrt[15]), (40 + 10*sqrt[15], 40 - 10*sqrt[15]) }

  • @wes9627
    @wes9627 5 днів тому

    √x=5+z and √y=5-z; (5+z)(5-z)=10; z^2=15; z=±√15; x=(5±√15)^2 and y=(5∓√15)^2

  • @souvik7752
    @souvik7752 2 дні тому

    Use 4ab