Continuous implies Bounded

Поділитися
Вставка
  • Опубліковано 29 гру 2024

КОМЕНТАРІ • 59

  • @chessematics
    @chessematics 3 роки тому +32

    He explains Analysis stuff in such a natural way that it seems like we're doing High School Algebra

  • @fahrenheit2101
    @fahrenheit2101 7 місяців тому +1

    4:45 Gotta love it when you get to use the Bolzano-Weierstrass-(ouch!) theorem in a proof!

  • @orenfivel6247
    @orenfivel6247 3 роки тому +10

    delta Dirac impulse in 4:46, δ(t-4:46)

  • @iguana1677
    @iguana1677 9 місяців тому +1

    This proof explanation contained several insightful nuggets which helped me to understand it,

  • @curiosityzero2151
    @curiosityzero2151 3 роки тому +2

    I like these analysis videos because I'm not good with it and they help me a lot. Ty Dr Peyam

  • @rikthecuber
    @rikthecuber 3 роки тому +4

    You know what I love about your videos? You make good level math available on yt w/o the fear of views. People switch generally to simple calc1 for views.

    • @drpeyam
      @drpeyam  3 роки тому +2

      Thanks so much!

  • @punditgi
    @punditgi 3 роки тому +2

    Brilliant! Only Dr Peyam can explain these topics so well! 😊

  • @billfeatherstone3018
    @billfeatherstone3018 3 роки тому +1

    Welcome back Dr Peyam

  • @LelPop
    @LelPop 3 роки тому +1

    Thank you so much for making my first year math course so much easier

  • @garvitgupta8485
    @garvitgupta8485 Рік тому

    thank you so much for such an easy explanation , it really helped a lot , thank you so much again

  • @ashishKjr
    @ashishKjr 3 роки тому +3

    I learnt it this way for the first time but I think Heine Borel (equivalent form of Bolzano- Weierstrass) makes this fact intuitive. Cover [0,1] with balls centered at each x in [0,1] with radii 1 (say). Continuity gives a bound for f on each ball. Heine Borel gives a finite subcover and the rest is easy to see. :)

    • @drpeyam
      @drpeyam  3 роки тому +4

      I like that proof too

  • @anjalinile7144
    @anjalinile7144 3 роки тому +1

    Waòoooooo Amazing Dr.PEYAM

  • @chessematics
    @chessematics 3 роки тому

    2:22 and is still continuous according to the Definition.

  • @DrWeselcouch
    @DrWeselcouch 3 роки тому +1

    Nice video! Brings me back to my analysis days! Just wondering, what courses are you teaching in the Fall?

    • @drpeyam
      @drpeyam  3 роки тому +1

      Multivariable calculus 😁

  • @tac0cat14
    @tac0cat14 3 роки тому

    Sequences and boundedness, reminds me of Bolzano-Weierstrass

  • @timduncankobebryant
    @timduncankobebryant 3 роки тому +2

    If only dr peyam can make a series on analysis 😕

    • @drpeyam
      @drpeyam  3 роки тому +1

      I already did, check out my playlists!

  • @desperatewanderer742
    @desperatewanderer742 Рік тому +1

    Why couldn't my teacher be like him

  • @mingyudu4431
    @mingyudu4431 2 роки тому +1

    Hi will you make videos for math140B? That would be so helpful!

    • @drpeyam
      @drpeyam  2 роки тому +1

      people.tamu.edu/~tabrizianpeyam/Math%20409/math409.html

    • @mingyudu4431
      @mingyudu4431 2 роки тому

      @@drpeyam thanks!

  • @whatitmeans
    @whatitmeans 2 роки тому

    Is this fact just a consequence of the Extreme Value Theorem?... also, since Wienner Process is continuous, that this means that for any compact domain the path will never run to infinity, so it distribution within the compact domain cannot be gaussian (since +/- infinity is never achievable), is this right??

  • @pawpatrol55
    @pawpatrol55 Рік тому

    what if f is only continuous at a single point?

  • @justincallan2549
    @justincallan2549 4 роки тому +2

    Wait so if the mother sequence goes to infinity that forces the subsequence of that mother sequence to go to infinity?

    • @drpeyam
      @drpeyam  4 роки тому +1

      Yes!

    • @noahtaul
      @noahtaul 3 роки тому +2

      Like if the entire class jumps off a bridge, that definitely means that you and your homies all jumped off the bridge since you're in the class!

    • @Kiwinov
      @Kiwinov 3 роки тому

      Why are the comments so old?

    • @siddhesh2703
      @siddhesh2703 3 роки тому

      How comments are 8 months ago
      Video is uploaded now just 10 min ago 🙄

    • @rikthecuber
      @rikthecuber 3 роки тому

      Wow bro......How did u manage to comment 8 months ago? It is released 6 hrs ago?! Am I hallucinating?

  • @alexandremargar123
    @alexandremargar123 3 роки тому

    Guru, how about the case of complex numbers? Like some trigonometric functions, ie: sin(x), can be written via Euler's formula, and if x->inf, than e^ix goes some complex infinity.

    • @tomctutor
      @tomctutor 3 роки тому

      Really, infinity is somewhere you, I or Mr Euler never reached. Mind you, Euler got quite close and you, my friend, will go around in circles trying.

    • @tomkerruish2982
      @tomkerruish2982 3 роки тому +1

      e^ix, for real x, only takes values on the unit circle. As x approaches positive infinity, e^ix simply traverses the unit circle infinitely many times, so its modulus (absolute value) is always 1. sin(ix), however, equaling i sinh(x), does shoot off to +i times infinity.

  • @dhiyanmilan3459
    @dhiyanmilan3459 3 роки тому

    Is there any video on simple high school calculus on your channel. I have a exam on Tuesday. 👍

    • @drpeyam
      @drpeyam  3 роки тому

      College algebra and Precalculus playlists

  • @pawandhaka1830
    @pawandhaka1830 2 роки тому +1

    Sir where are you from 🙄

  • @User-gt1lu
    @User-gt1lu 3 роки тому

    Hi, I have a question:
    Could we also use the monotone sequence theorem because we can find a reordering of x_n such that its monotonically increasing and also bounded and therefore convergent?
    Im not sure about this but i think its kind of the same argumentation.

    • @tomctutor
      @tomctutor 3 роки тому +1

      One sequence of elements that is reordered is not the same sequence, that's why we use vectored notation (a_n) and not set notation {a_n}
      same way that reordering a convergent series can make it diverge, consider e.g. Σ (1-1/2+1/3-1/4+1/5..) this converges [ln(2)] since it alternates, monotonic, but
      Σ(1+1/3+1/5..)-Σ(1/2+1/4+1/6..) = Σ(1+1/3+1/5..)-(1/2)Σ(1+1/2+1/3..) clearly harmonic diverges.

    • @User-gt1lu
      @User-gt1lu 3 роки тому +2

      @@tomctutor Thanks, i get your point but isn’t a subsequence of (a_n) defined as (a_m(n)) where m is a bijective function from the Index set into itself? This would imply that m could also be a permutation of the index set wich would be a reordering. So one can choose a reordering of the index set such that the subsequence is monotonically increasing an therefore convergent by the monotone sequence theorem because the sequence is bounded. (Wich is the same result as Bolzano- Weierstraß in IR.)
      As i said i completely understand what you mean but i think i confused you a little by not mentioning that im talking about subsequences. Anyway, thanks for replying tho.

    • @tomctutor
      @tomctutor 3 роки тому

      @@User-gt1lu Good thinking, but strictly maintaining order, i.e. dropping elements of parent sequence, is allowed. As I said do not confuse sequences with sets, a sequence has a strict indexing on N.

  • @cloudhuang6691
    @cloudhuang6691 8 місяців тому

    Excuse me sir, isn't there posibble that f(x0) goes to infinity either? Then there is no contradiction!!??

  • @yoav613
    @yoav613 3 роки тому

    Is it theorem or fact if you prove it? Or it dose not matter?

    • @drpeyam
      @drpeyam  3 роки тому +1

      It’s a theorem that I prove in the video

  • @sadeekmuhammad3646
    @sadeekmuhammad3646 3 роки тому +1

    Wait.... What??? Comments are older than the video!!!! I mean..... How is it that damn incidence even possible???

    • @iabervon
      @iabervon 3 роки тому +1

      He's been making lectures from his fall 2020 class public more gradually. Older comments are from his students, and UA-cam dates videos when they become public.

    • @drpeyam
      @drpeyam  3 роки тому +4

      Magic 🪄

    • @sadeekmuhammad3646
      @sadeekmuhammad3646 3 роки тому +1

      @@iabervon Oh I see,,,, thx 😁

    • @sadeekmuhammad3646
      @sadeekmuhammad3646 3 роки тому

      @@drpeyam 🙊🙉🙊🙉🙊

  • @purim_sakamoto
    @purim_sakamoto 3 роки тому +1

    へええ bounded functionちうのがあるの
    後半難しくなってごにゃごにゃなったよ😅

  • @Chhatrapati72
    @Chhatrapati72 3 роки тому

    Love from India

  • @nurpechbeimspielen3139
    @nurpechbeimspielen3139 3 роки тому

    Nice

  • @lacasadeacero
    @lacasadeacero 3 роки тому

    u cant use the hypothesis that f is continous. becouse u say as true that is continous and then say its not, but u are using the continuity as a true hipothesis, at the same time as the thesis like its not bounded then its not continous.

    • @drpeyam
      @drpeyam  3 роки тому

      I don’t understand. I show that if f is continuous then f is bounded. So I can use the hypothesis that f is continuous

    • @geraldhuang7858
      @geraldhuang7858 3 роки тому

      The assumption is that f is indeed continuous and you show (by way of contradiction) that f must indeed be bounded. If f was not continuous, then the statement vacuously holds since F -> anything is true.

  • @alfredocuomo4284
    @alfredocuomo4284 3 роки тому

    👍