f/g is continuous

Поділитися
Вставка
  • Опубліковано 1 січ 2025

КОМЕНТАРІ • 9

  • @martinepstein9826
    @martinepstein9826 3 роки тому +5

    Ooh nice. I've only seen the "Proof by inscrutable choice of delta" version of this. Very nice how you motivated all the steps.

  • @thedoublehelix5661
    @thedoublehelix5661 3 роки тому +3

    I showed 1/x is continuous (the boring sequence way) then used the fact that the composition of continuous functions is continuous

    • @drpeyam
      @drpeyam  3 роки тому +2

      Prove your composition fact though, with epsilon delta

    • @thedoublehelix5661
      @thedoublehelix5661 3 роки тому

      @@drpeyam lol of course !

  • @Nusret15220
    @Nusret15220 2 роки тому

    Thanks for the proof!!

  • @Happy_Abe
    @Happy_Abe 3 роки тому +1

    I think you can show more easily the inequality than having to use the reverse triangle inequality.
    If |f(x)-f(x0)|

    • @drpeyam
      @drpeyam  3 роки тому +1

      What if f(x0) is negative or 0?

    • @ryanorshine
      @ryanorshine 3 роки тому +1

      @@drpeyam f(x0) is nonzero by assumption. We can do the rest by cases. Avraham did the positive already. For the negative case, we have f(x_0)=-|f(x_0)|. Then -|f(x0)|/2 < f(x) - (-|f(x0)|) < |f(x_0)|/2, or (-3/2)|f(x0)| < f(x) < (-1/2)|f(x0)|. Thus |f(x)| > (1/2)|f(x0)|. Though I think reverse triangle inequality is more elegant (and it extends to complex numbers!)

    • @Happy_Abe
      @Happy_Abe 3 роки тому

      @@drpeyam I’m not sure what fails then
      I was using the fact that |x-y|0 is equivalent to -z