Germany - Math Olympiad Question

Поділитися
Вставка
  • Опубліковано 20 гру 2024
  • A nice system of equations from math olympiad. What do you think about this question? If you're reading this ❤️.
    My second math channel : / @relaxingmath
    Thank you for your support💖
    ✅️Check out my latest videos:
    🔴 Can you solve this Cambridge Entrance Exam Question?
    • Can you solve this Cam...
    🔴 Can You Pass Harvard University Entrance Exam?
    • Can You Pass Harvard U...
    🔴 Everything is possible in math: • Everything is possible...
    🔴 Can You Pass Harvard's Entrance Exam?: • Can You Pass Harvard's...
    Hello My Friend ! Welcome to my channel. I really appreciate it!
    ‪@higher_mathematics‬
    #maths #math

КОМЕНТАРІ • 10

  • @zawatsky
    @zawatsky 13 годин тому

    Если (х+у)²=xy означает, что неполный квадрат суммы равен нулю. Таким образом x³-y³=0, при этом мы точно знаем про квадрат, а значит, x³=y³, т. е. х=у (нечётная степень). Пробуем подставить в неполный квадрат: x²+x²+x²=0, т. е. 3x²=0⇔х=0, а значит и у тоже. Но тогда сумма двух нулей получается равной восьми. Выходит, что решений (во всяком случае, действительных) не имеется.

  • @jan-willemkrans7074
    @jan-willemkrans7074 12 годин тому

    Always fun to see seemingly simple statements to boil down to complex solutions. Good exercise, but this one wasn't too hard to solve for me and only took a few steps to complete. (Note that I used the textbook complete the square method for this as there's no leading coefficient for x or y squared after the first step. After that, you almost immediately get the answers.)
    Perhaps people would appreciate the logic behind why complex solutions appear here. It's in the maximizing and minimizing values for the addition, then multiplication of the system. A multiplication of values with a hard limit on the sum like in this system of equations is always maximized with real numbers if the multiplied values are equal. From the first equations you would then get 4+4=8, but in the second 4*4=16, so it doesn't match. To get to 64 it simply has to come from a higher dimension. A similar thing happens with similar simple systems of equations that contain a complex number on one side each. You then sometimes wind up solving them with another higher dimension, too. That's in the form of quaternions (and onward number systems, but these subjects aren't taught much in universities worldwide).

  • @ShineMultiDevice-zi1iu
    @ShineMultiDevice-zi1iu 14 годин тому +2

    I use the same solution with searching some variable value, i try search the value of y first but, fortunately i still get the same answer with bit of Missing Point 😅

  • @James-bak5
    @James-bak5 9 годин тому +1

    I saw it and i thought well thats a quadratic and i got it after using the formulae but i can also understand the double equation method

  • @Myroslav1911
    @Myroslav1911 4 години тому

    Using AM-GM inequality we can say that there is no real solution

  • @RubelSk-m9r
    @RubelSk-m9r 12 годин тому

    Give that,
    x+y = 8 ------>(I)
    xy = 64
    (x-y)² = (x+y)² -4xy
    (x-y)² = 8² - 4×64
    (x-y)² = -3×64
    (x-y) = √(-3×64)
    (x-y) = 8√3i. ----->(ii)
    From (i) & (ii),
    2x = 8√3i + 8
    x = 4(√3i + i)
    y = 8 - x
    y = 8 - 4(√3i + 1)
    y = 4 - 4√3i
    y = -4(√3i-1)

  • @HangingQueen
    @HangingQueen 15 годин тому +3

    No solution

    • @Sham_Fl
      @Sham_Fl 12 годин тому +2

      Imaginary numbers

  • @Christopher-e7o
    @Christopher-e7o 4 години тому

    X,2×+5=8

  • @NounPhechnai
    @NounPhechnai 15 годин тому +1

    1st