Derivation of Euler's Formula and Famous Identity

Поділитися
Вставка
  • Опубліковано 20 гру 2024

КОМЕНТАРІ • 8

  • @pelasgeuspelasgeus4634
    @pelasgeuspelasgeus4634 3 дні тому +1

    On differentiating you treated i=sqrt(-1) as a real number. Why? How was it validated that differentiation of i is the same as a real number?

    • @GLabsPlus
      @GLabsPlus  2 дні тому

      Differentiation is done here with respect to theta. So, i=sqrt(-1) is treated as a constant, not as a real number.

    • @pelasgeuspelasgeus4634
      @pelasgeuspelasgeus4634 День тому

      @GLabsPlus i=sqrt(-1) is a constant but differentiation of it hasn't been validated. You won't find it in any math book.

  • @wes9627
    @wes9627 13 днів тому +1

    I saw this derivation eons ago; let's see if I can recall. Taylor series expansion: f(x)=f(0)+f'(0)x+f''(0)x^2/2!+f'''(0)x^3/3!+f''''(0)x^4/4!+...
    e^x=1+x+x^2/2!+x^3/3!+x^4/4!+...; sin(x)=x-x^3/3!+x^5/5!-x^7/7!+...; cos(x)=1-x^2/2!+x^4/4!-x^6/6!+...
    e^{ix}=1+ix+(ix)^2/2!+(ix)^3/3!+(ix)^4/4!+(ix)^5/5!+(ix)^6/6!+(ix)^7/7!+...=(1-x^2/2!+x^4/4!-x^6/6!+...)+i(x-x^3/3!+x^5/5!-x^7/7!+...)=cosx+i*sinx
    And there we have it, which is so much easier after someone else has figured it out ahead of time.

    • @GLabsPlus
      @GLabsPlus  12 днів тому

      That's right!

    • @GLabsPlus
      @GLabsPlus  11 днів тому

      The next video goes through the proof of Euler's Formula using the Taylor Series.
      ua-cam.com/video/vLgDGCChOoU/v-deo.html

  • @ccibyoutube
    @ccibyoutube 16 днів тому +1

    I really like your writing font, looks neat