Discrete-Time Signal Energy and Power Computation Example - DT Part 1 (9/10)

Поділитися
Вставка
  • Опубліковано 14 гру 2024

КОМЕНТАРІ • 15

  • @kyfkyf777
    @kyfkyf777 5 років тому +6

    Thank you so much. This was a bigger help than my professor.

    • @AdamPanagos
      @AdamPanagos  5 років тому

      Glad I could help, thanks for watching.

  • @rhonihanlon281
    @rhonihanlon281 2 роки тому +1

    The video content is so excellent, congratulations

    • @AdamPanagos
      @AdamPanagos  2 роки тому

      I’m glad you enjoyed the video! Make sure to check out my website adampanagos.org for additional content (600+ videos) you might find helpful. Thanks, Adam

  • @NewYorkeez
    @NewYorkeez 4 роки тому +4

    Thanks a lot, needed this extra explanation !!!

    • @AdamPanagos
      @AdamPanagos  4 роки тому

      Glad I could help, thanks for watching!

  • @yacocortez
    @yacocortez 4 роки тому +4

    hello , you are a big professor, I have one question , in the minute 7:49 ; N+1/2N+1 = 1/2? Tk

    • @AdamPanagos
      @AdamPanagos  4 роки тому +3

      Yes, we're taking the limit as N goes to infinity of the ratio (N+1)/(2N+1). The numerator has an N, the denominator has a 2N. As N gets large, these terms dominate and the ratio is 1/2. Hope that helps,
      Adam

    • @yacocortez
      @yacocortez 4 роки тому +1

      @@AdamPanagos Great

    • @rajeshneelakandan6928
      @rajeshneelakandan6928 4 місяці тому

      Lim N->Inf (N+1)/(2N+1)=Lim N->Inf N(1+(1/N))/N(2+(1/N))=Lim N->Inf (1+(1/N))/(2+(1/N))=1/2.

  • @atulss2321
    @atulss2321 3 роки тому

    For the first problem if we take impulse(k+3) what will be the answer?

  • @olamideajayi247
    @olamideajayi247 2 роки тому

    why is alpha raised to power k decreasing on the graph? isnt alpha to the power of 0 less than alpha to the power of 1?

    • @olamideajayi247
      @olamideajayi247 2 роки тому

      is it because alpha is less than 1?

    • @AdamPanagos
      @AdamPanagos  2 роки тому

      @@olamideajayi247 Yes, this problem assumes alpha < 1. So, alpha^0 = 1, and alpha^1 < 1. Hope that helps,
      Adam

  • @gruntman438
    @gruntman438 5 років тому +1

    I love you