Tutorial: Convolution sum

Поділитися
Вставка
  • Опубліковано 9 лис 2024

КОМЕНТАРІ • 44

  • @RoseHulmanOnline
    @RoseHulmanOnline  11 років тому +6

    The method shown here is based on what physically happens with the system. Each input sample triggers its own scaled and shifted (delayed) impulse response, and these are all added together to form the output. Look particularly at 7:42, and you can see the effect of the delay in the argument for h, it appears as h[n-1]. The other method that you are thinking about ("flip and slide") is based on the convolution sum equation; the delay shows up as negated time index (k) and that's why h must flip.

  • @Tobiasz931
    @Tobiasz931 10 років тому +9

    Thank you so much for those videos! I passed my exam only thanks to those (it's not really my field as I study IT)! It also helped a lot of my friends.

  • @karlchua9188
    @karlchua9188 9 років тому +1

    Taking my DSP Lectures this year and this helped me a lot! Too bad my professor cannot really explain this well. Thank you very much Rose-Hulman. Cheers from the Philippines

    • @eggxecution
      @eggxecution Рік тому

      currently studying for boards and understanding this for the first time I'm struggling 😂

  • @EssayWriting-h2c
    @EssayWriting-h2c 8 місяців тому

    Thanks, I have been struggling to understand this concept but you made it easy !

  • @bryandavis2571
    @bryandavis2571 9 років тому +3

    Great video this is way easier than the way I learned

  • @christerranaldo906
    @christerranaldo906 3 роки тому

    Thanks! Now that I have seen an example I understand it much better

  • @nikoofayyaz8811
    @nikoofayyaz8811 2 місяці тому

    thanks for the helpful video . just a question: what is the center if the number of h[n] is even?

  • @seaburyneucollins688
    @seaburyneucollins688 3 роки тому

    Wow, so this is what my textbook was trying to explain to me? I I regret spending so much time trying to decipher that load of gibberish, when I could have just watched this video instead!

  • @RoseHulmanOnline
    @RoseHulmanOnline  11 років тому +2

    Reply to Trần Hồng Phúc: The two formulas are equivalent: your equation (Xmax+Hmax) - (Xmin+Hmin)+1 = (Xmax-Xmin) + (Hmax-Hmin) +1 = (Xmax-Xmin+1) + (Hmax-Hmin+1) - 1 = Xlength + Ylength - 1 = equation in video.

  • @isaroque1773
    @isaroque1773 9 років тому +1

    OMG thank you so much for this vídeo. In 5 minutes I understood, in a much simpler way, the convolution summation. :D

  • @sdavid78
    @sdavid78 11 років тому +1

    In the example at 6:00, h[n]={1,2,-1} with the second term underlined, indicating h[-1]=1 ; h[0]=2; h[1]=-1. Is it possible for the impuse response of a LTI system to be defined for negative n "h[-1]=1"? doesn't that mean to have a value for the impulse response prior to the impulse?

    • @suyashmisra7406
      @suyashmisra7406 2 роки тому

      yes, such systems are called non causal systems. In practice, you can implement it if you use delays.

  • @aokay720
    @aokay720 3 роки тому

    Thank you so much for taking the time to help me with this!

  • @YewJiaMing
    @YewJiaMing 11 років тому

    it was really easy to understand, besides, the method introduced in the example is really convenient.

  • @tranhongphucdt
    @tranhongphucdt 11 років тому

    Generally, the length of y =(max index x+max index h) - (min index x+min index h) +1

  • @김뫄뫄-f2u
    @김뫄뫄-f2u 6 місяців тому

    감사합니다

  • @deathbypenguins
    @deathbypenguins 9 років тому

    This is a technique very different that what my professor taught us. A good shortcut, but I don't think my professor would be too impressed with it... Lol.

  • @tanjuthechill4871
    @tanjuthechill4871 3 роки тому

    For given y(n) and h(n)
    What will be input x(n)
    ??

  • @tranhongphucdt
    @tranhongphucdt 11 років тому

    Your tutorial is very understandable and usefull,but, your fomular for calculating the length of y is only right in this case, the others will be wrong. Could you take look again?

  • @morendav
    @morendav 11 років тому

    Is there a reason that you did not need to flip the LTI system (H) due to the negative sign infron of the k in h(n-k) ???
    Please let me know as I am confused

  • @andrewdavis6191
    @andrewdavis6191 8 років тому

    elegant explanation! thank you

  • @sahilgoyal1124
    @sahilgoyal1124 12 років тому

    nice video...good job helped me a lot

  • @harry4676
    @harry4676 2 роки тому

    Tks u

  • @mcculloughmusprime
    @mcculloughmusprime 12 років тому

    Wow. Discrete convolution is a lot simpler than continuous.

  • @al.qasimi
    @al.qasimi 11 років тому

    Thank you so much

  • @CoupedUpGenny
    @CoupedUpGenny 9 років тому

    how would you multiply it , without a shift?

  • @SwathiMenta
    @SwathiMenta 12 років тому

    Amazing video! Was of tremendous help! Thank you :)

  • @usmanhari7800
    @usmanhari7800 11 років тому

    This video solved my 1 year old problem

  • @xoraxera
    @xoraxera 8 років тому

    Thank you so much! This was reallyyy helpfull!

  • @electrical4th371
    @electrical4th371 8 років тому

    nice tutorial

  • @HarryXiVlog
    @HarryXiVlog 9 років тому

    helps a lot! thx

  • @killZtheterrannoob
    @killZtheterrannoob 12 років тому +2

    Thanks very useful XD

  • @deweymoorejr
    @deweymoorejr 7 років тому

    Very nice

  • @volkerblock
    @volkerblock 10 років тому

    good video, thank you

  • @volkerblock
    @volkerblock 11 років тому

    right picture: delta or h [n-5] ?

    • @RoseHulmanOnline
      @RoseHulmanOnline  10 років тому

      h[n-5]... I caught this problem earlier and have the "CORRECTION" in the video description.

  • @CreativeBangla
    @CreativeBangla 5 років тому

    Thank you so much. :)

  • @xMrJanuaryx
    @xMrJanuaryx 8 років тому

    I dont understand why its x[k]h[n-k] where does the -k come from why not +k?

    • @xMrJanuaryx
      @xMrJanuaryx 8 років тому

      OH! Cause its a x(+k) if it were x(-k) then it would be h(n+k)!

  • @ArcaneKn1ght
    @ArcaneKn1ght 12 років тому

    Chuck Norris is drawing this graphics.