очень умен, интересно слушать. Про теорию Галуа наслышан, ибо с помощью нее доказывается неразрешимость трех классических задач древности о трисекции угла, удвоении куба и тд с помощью циркуля и линейки
Спасибо. очень полезные лекции! Особенно сильно нравится то, что не просто даются скучные формулы, которые не всегда запомнить можно, а метод получения этих формул (что с лёгкостью можно повторить в будущем). Этого, зачастую, и не хватает в школе (по крайней мере не хватало мне лично, даже при хорошем учителе)
В любом случае, ты же когда решаешь даже например квадратное уравнение. Ты же не пишешь, сначала разделим на a, потом b/a * x превратим в квадрат получится квадрат суммы (x + .....)^2 = -c/a и так далее. Ты сразу считаешь b^2-4ac, а потом x1, x2, по формулам. Но конечно ты чуток прав, выводить формулы довольно таки увлекательно.
08:42 вот тут бы хорошо б это визуализировать это на доске простым понятным примером, чтобы сформировался образ. Не все могут так быстро со слов понимать абстракции минуя визуальный образ
с 38:29 не понял переход к квадратному уравнению с корнями альфа в кубе и бета в кубе((( реально фокусы какието, крутим вертим, чтото окудато само появляется берётся, и оппа, сошлось, правда цепочка рассуждений порвана в нескольких местах(((
ออ ซํา , согласен. Хотя он потом, чуть позже 41:46, говорит, что это теорема Виета для приведённого квадратного уравнения: сумма *корней* у него как раз равна коэффициенту перед _x_ в первой степени взятому с обратным знаком, а произведение как раз таки свободному члену. И он выводит такое квадратное уравнение. на основе этого наблюдения возможен переход от "Виетовской" записи корней к традиционной записи через дискриминант, т.к. в обоих случаях альфа и бетта в кубах будут решениями такого уравнения. грубо говоря, на основе условий 36:08 он преобразовал сумму кубов и их произведение к другой форме записи (42:18), как если бы альфа^3 и бетта^3 были корнями какого-то уравнения. А так да, это по сути, математическая интуиция, как он сам сказал на 44:24, и надо умудриться это увидеть! Он про это говорит на 44:40
Когда лектор сказал, кто был первым обоснованно догадавшимся и написавшем о том, что нет конечной формулы для 5-ой степени, у меня сразу в голове заиграла эта песня: m.ua-cam.com/video/GwDClnIBUIg/v-deo.html
В поле для каждого элемента должны быть выполнены следующие условия: коммутативность и ассоциативность сложения и умножения, левая и правая дистрибутивность, существование противоположного и обратного элементов, существование единицы и нуля
Отличная лекция. Кстати, на ноль делить можно. Напоминаю, что в математике если хочется, то можно. Есть "нестандартная математика", в которой есть бесконечно малые.
У меня вопрос: а почему общее решение уравнения 5-й степени нужно искать непременно в радикалах? Виет, насколько я помню, искал решение кубического уравнения в тригонометрических функциях, конкретно, в арккосинусах. Почему никто не доказывает, что уравнение 5-й степени нельзя решить в арккосинусах? А вдруг можно!
@@АлексейАндреев-ы5щ, спасибо, кэп! Но я ведь именно об этом и спрашивал. Почему вопрос стоит именно о разрешимости уравнений в радикалах, а не о разрешимости в принципе? Кстати, разрешимость в принципе доказывается обычным построением графика. Здесь никакая теория не нужна. Но почему именно радикалы, а не синусы/косинусы?
@@rupertjunior2070 потому что это такая математическая проблема-«разрешимо ли уравнение в радикалах». Как, например, в учебнике может быть задача решить квадратное уравнение графическим методом, То его надо будет решить именно графическим методом, хотя мы прекрасно можем решить его через дискриминант
Алексей вроде бы неправильно записал формулу на 17 минуте) У mathologer-а по-другому она выглядит ( в первой строчке должно быть не a_2^3/9a_3^3,а a_2^2/9a_3^2)
Алексей, расскажите про дифуры. Мы их в универе проходили, но я не понял совершенно. Сейчас по работе в матлабе считаю, но хочется понимания того, что там происходит.
На edx есть замечательные курсы по дифурам. 4 штуки: Введение в дифуры, системы 2х2; системы NxN и линейная алгебра; Ряды Фурье и дифуры в частных производных. На английском, правда.
Спасибо, но на наш взгляд при выводе формулы Кардано (методически, во всяком случае) несколько неверно говорить, что на альфа и бетта мы можем наложить два условия. Можем наложить ещё только одно, поскольку первое у нас уже есть - это данное кубическое уравнение после замены в нём y на альфа плюс бетта. Надо видимо произнести так: Наложим на альфа и бетта условие: сумма их кубов равна 2q. Тогда в силу исходного уравнения произведение альфы и бетты = p. А в силу формул Виета кубы альфы и бетты будут корнями квадратного уравнения Z**2 - 2qZ + p**3 = 0. и т.д.
Теория чисел - довольно сложный раздел. Неуютно становится в районе "рассмотрим идеал кольца как обобщение понятия простого числа". Это - уровень XIX века. Кольцо - это нечто среднее между группой и полем. Ибо есть сложение, вычитание и умножение, но не деление.
@@FeelUs я что-то никак не пойму, в чем проблема. Возьмите формулу Кардано и решите с помощью нее ваше уравнение. И убедитесь, что везде под радикалами находятся натуральные числа (т.е. частный случай рациональных чисел). Потому что у вас коэффициенты являются целыми числами. А кроме коэффициентов в уравнении ничего нет, это и есть начальные условия задачи. Ну еще там будет мнимая единица под радикалом - это что ли вас смущает?
@@FeelUs , такое решение вас устроит? x=cbrt(1+sqrt(-7))+cbrt(1-sqrt(-7)). Здесь sqrt(x) - квадратный корень (от слов square root), cbrt(x) - кубический корень (от слов cube root). Вот, действительный корень уравнения выражен в радикалах рациональных чисел. Кроме радикалов и рациональных чисел, здесь больше ничего нет. Ну, еще арифметические действия.
К сожалению, не видно ничего, что профессор пишет на доске. А воспринимать на слух для человека недостаточно подготовленного (как я, например) невозможно.
ппц дикарство в комментах - вам обратили внимание на привычку, а вы начинаете драться с источником, вот так вот Ассанжа и схватили, с такой же культурой бить
практичных применений бесконечно много, ведь это решения уравнений, которые очень важны в физике, программировании, да даже в экономике думаю найдутся уравнения с n > 5
Уравнения такого типа встречаются очень часто. В частности большое количество квантовомеханических задач сводятся к решению т.н. векового или характеристического уравнения, которое как раз и является уравнением указанного типа. Вот только теорема Абеля - Руффини делу не помогает. А вот группа перестановок это отличная штука, не знаю будет ли он про нее говорить.
В теории групп ученики обычно обламывают зубы на смежных классах. То есть, второй лекции из шести. Дальше, обычно - непролазный матан. Посмотрим, как справится Савватеев...
Строго говоря мнимые числа это не числа, а математические комплексы "операция+число" (Операция * Элемент) где операция это квадратный корень а число - некая отрицательная величина. Операция возведения в квадрат является обратной к извлечению квадратного корня, поэтому возводя такой комплекс в квадрат мы в соответствии с теорией групп в силу ассоциативности получаем Операция(-1) * (Операция * Элемент) = (Операция(-1) * Операция) * Элемент = Элемент. То есть возводя мнимое число в квадрат прямая и обратная операции сокращаются и мы получаем саму отрицательную величину. Комплексная математика работает безукоризненно именно в силу этой симметричности прямой и обратной операций. Просто надо помнить что мнимая величина это не просто число, а комплекс "операция+число" и не имеет значения что значение этого комплекса не может быть представлено в виде действительного числа.
Речь идет о мнимой единице а не а комплексных числах, которые являются комбинацией действительной и мнимой части и представляются либо в виде пары действительных чисел, либо в полярных координатах. Я имел ввиду что не существует действительного представления числа "i". То есть какое бы вы не выбрали представление числа "i" вы не сможете отмерить линейкой "5i" метров веревки или отвесить "250i" граммов колбасы в магазине.
Муторно даже вникать в такого рода определения =) По моему мнимая часть чисел это очень хорошая иллюстрация внешнего измерения. Вот пока мы мнимое число не умножим на еще одно мнимое, мы не проявим число в нашем мире. Оно останется где-то в параллельных мирах, и даже хрен знает, большое оно или маленькое. Оно просто невозможно в нашем мире. Очень интересные рассуждения о мире и своем месте в нем можно раздуть из этих мыслей, и вылить не одно море воды по данной теме =) Мне кажется, это достойная тема разговора для дружеских пьянок умных и порядочных людей =)
Глупо пытаться объяснить мнимую величину с позиции вещественных чисел. Это абсолютно иная конструкция, которая живет по своим правилам. Это тоже самое, что пытаться объяснить геометрию Лобачевского с позиции евклидовой геометрии.
Alex Petrov, раз уж вы решили притянуть физику, то отчего же нельзя? весами взвешивайте колбасу, а i-весами взвешивайте i-колбасу. И ни в коем случае колбасу с i-колбасой не кладите в одну сумку, колбасу кладите в сумку, а i-колбасу в i-сумку.
Блин, Савватеев, вы издеваетесь, что ли? Нафига эти длиннющие формулы из википедии, да еще и без вывода??? Неужели тут можно что-то понять? Итальянские математики решали уравнение x^3+px+q=0, к которому можно свести любое кубическое уравнение. Как об этом можно было не сказать?
Савватеев как математик должен понимать, что если где-то прибыло, значит где-то убыло. Если есть школьники, которые изучают теорию Галуа, то должны быть школьники, которые не умеют складывать дроби. Если бы Савватеев не тянул свой край ввысь, то и противоположный не уходил бы вниз. А самоутверждаться на сирых мира сего - это недостойно ни математика, ни ученого. Они существуют только потому, что есть противоположный убогий край. Математик как-то должен соображать в диалектике.
Пишу вам из 2019 спасибо за этот цикл лекций, жаль что не наткнулся на него раньше.
очень умен, интересно слушать. Про теорию Галуа наслышан, ибо с помощью нее доказывается неразрешимость трех классических задач древности о трисекции угла, удвоении куба и тд с помощью циркуля и линейки
Спасибо. очень полезные лекции! Особенно сильно нравится то, что не просто даются скучные формулы, которые не всегда запомнить можно, а метод получения этих формул (что с лёгкостью можно повторить в будущем). Этого, зачастую, и не хватает в школе (по крайней мере не хватало мне лично, даже при хорошем учителе)
В любом случае, ты же когда решаешь даже например квадратное уравнение.
Ты же не пишешь, сначала разделим на a, потом b/a * x превратим в квадрат получится квадрат суммы (x + .....)^2 = -c/a и так далее.
Ты сразу считаешь b^2-4ac, а потом x1, x2, по формулам.
Но конечно ты чуток прав, выводить формулы довольно таки увлекательно.
Очень интересно. Досмотрю все лекции по теории Галуа до конца.
Супер!!! Математика и Физика!!!!
В далеком 1979 году я впервые познакомился с формулой Кардано-Тарталья за школьной партой...смотрел видос и вспоминал юность))
Спасибо за лекцию
Чувак жжет, начиная с 3 минуты
За видео лайк - настроение поднял
Всем советую - до начала просмотра прочтите Википедию
08:42 вот тут бы хорошо б это визуализировать это на доске простым понятным примером, чтобы сформировался образ. Не все могут так быстро со слов понимать абстракции минуя визуальный образ
7 лет прошло с тех пор, а я только с 4 до 5 лекции по пониманию добрался (
👀
СПАСИБО!
ДА ДА, СПАСИБО!!! только что это было?
с 38:29 не понял переход к квадратному уравнению с корнями альфа в кубе и бета в кубе((( реально фокусы какието, крутим вертим, чтото окудато само появляется берётся, и оппа, сошлось, правда цепочка рассуждений порвана в нескольких местах(((
ออ ซํา , согласен. Хотя он потом, чуть позже 41:46, говорит, что это теорема Виета для приведённого квадратного уравнения: сумма *корней* у него как раз равна коэффициенту перед _x_ в первой степени взятому с обратным знаком, а произведение как раз таки свободному члену. И он выводит такое квадратное уравнение. на основе этого наблюдения возможен переход от "Виетовской" записи корней к традиционной записи через дискриминант, т.к. в обоих случаях альфа и бетта в кубах будут решениями такого уравнения. грубо говоря, на основе условий 36:08 он преобразовал сумму кубов и их произведение к другой форме записи (42:18), как если бы альфа^3 и бетта^3 были корнями какого-то уравнения. А так да, это по сути, математическая интуиция, как он сам сказал на 44:24, и надо умудриться это увидеть! Он про это говорит на 44:40
@@SAlexanderV74 То есть, Грубо говоря он наложил удобные для него условия, и на основе этого составил квадратное уравнение?
Когда лектор сказал, кто был первым обоснованно догадавшимся и написавшем о том, что нет конечной формулы для 5-ой степени, у меня сразу в голове заиграла эта песня: m.ua-cam.com/video/GwDClnIBUIg/v-deo.html
Отличная работа лектора! Но, хочу заметить, выражаясь словами лектора: "если хочется, то можно", на ноль можно делить, но очень долго...
Не пойму, поле это когда +,×,-,:
При этом Q поле. Но там же нельзя делить на 0? А почему тогда N не поле, там же можно 2-1=1 и 8:2=4?
В поле для каждого элемента должны быть выполнены следующие условия:
коммутативность и ассоциативность сложения и умножения, левая и правая дистрибутивность, существование противоположного и обратного элементов, существование единицы и нуля
Спасибо! )
Отличная лекция.
Кстати, на ноль делить можно. Напоминаю, что в математике если хочется, то можно. Есть "нестандартная математика", в которой есть бесконечно малые.
Alexey Sheverev на ноль делить нельзя, можно делить на бесконечно малое число
Есть алгебры с делителем нуля.
Разработчики Боинга 737мах8 , создавая автопилот нью эйдж, пользовались особой математикой, что в результате и привело.... сами знаете к чему.
@@radiopapa6134 Там дело в том что у разрабов и тестировщиков руки не из того места растут, и особая математика тут ни при чем
:)
У меня вопрос: а почему общее решение уравнения 5-й степени нужно искать непременно в радикалах? Виет, насколько я помню, искал решение кубического уравнения в тригонометрических функциях, конкретно, в арккосинусах. Почему никто не доказывает, что уравнение 5-й степени нельзя решить в арккосинусах? А вдруг можно!
Флаг вам в руки! Дерзайте, доказывайте!
Через эллиптические функции можно. Эллиптические функции - это обобщение тригонометрических.
Потому что вопрос стоит именно о разрешимости уравнений в радикалах, а не о разрещимости в принципе
@@АлексейАндреев-ы5щ, спасибо, кэп! Но я ведь именно об этом и спрашивал. Почему вопрос стоит именно о разрешимости уравнений в радикалах, а не о разрешимости в принципе?
Кстати, разрешимость в принципе доказывается обычным построением графика. Здесь никакая теория не нужна. Но почему именно радикалы, а не синусы/косинусы?
@@rupertjunior2070 потому что это такая математическая проблема-«разрешимо ли уравнение в радикалах». Как, например, в учебнике может быть задача решить квадратное уравнение графическим методом, То его надо будет решить именно графическим методом, хотя мы прекрасно можем решить его через дискриминант
Вышел на пенсию, могу невозбранно смотреть лекции Савватеева, Трушина, Сурдина, Сапольского, И ещё толпу)
Алексей вроде бы неправильно записал формулу на 17 минуте)
У mathologer-а по-другому она выглядит
( в первой строчке должно быть не a_2^3/9a_3^3,а a_2^2/9a_3^2)
29:10 кто подскажет шо е таке p и q ? Потерял откуда оно взялось
52:00 X^5 - 6×X+3=0
Алексей, расскажите про дифуры. Мы их в универе проходили, но я не понял совершенно. Сейчас по работе в матлабе считаю, но хочется понимания того, что там происходит.
На edx есть замечательные курсы по дифурам. 4 штуки: Введение в дифуры, системы 2х2; системы NxN и линейная алгебра; Ряды Фурье и дифуры в частных производных.
На английском, правда.
возьмите книжку и прочитайте, трудно что ли
Спасибо, но на наш взгляд при выводе формулы Кардано (методически, во всяком случае) несколько неверно говорить, что на альфа и бетта мы можем наложить два условия. Можем наложить ещё только одно, поскольку первое у нас уже есть - это данное кубическое уравнение после замены в нём y на альфа плюс бетта. Надо видимо произнести так: Наложим на альфа и бетта условие: сумма их кубов равна 2q. Тогда в силу исходного уравнения произведение альфы и бетты = p. А в силу формул Виета кубы альфы и бетты будут корнями квадратного уравнения Z**2 - 2qZ + p**3 = 0. и т.д.
Шутник Безфамильный, лектор сказал абсолютно верно. Вопрос возникает, но через минуту он рассеивается. Все корректно объяснено
На заочной олимпиаде... Хотели чтоб школьники вывели Кордано формулу .... 25 лет назад такое подкидывали) с подсказкой замены И суммы
Что такое перестановки корней
a kakoy razdel matematiki po nastayashemu sloxnee ostalnyh razdelov
?????????????
Теория чисел - довольно сложный раздел. Неуютно становится в районе "рассмотрим идеал кольца как обобщение понятия простого числа". Это - уровень XIX века. Кольцо - это нечто среднее между группой и полем. Ибо есть сложение, вычитание и умножение, но не деление.
Клавиатура с кириллицей - самый сложный раздел.
Множество людей считают, что раздел математики изучающий алгебру и геометрию "алгебраическая геометрия", является сложной для понимания
@@TheCharlieGordon
Он сказал "razdel MATEMATIKI", слепой. Так что твой подкол не то что неуместный, а неудачный.
возьмем кубическое уравнение: x^3-6x-2=0. Оно имеет 3 действительных корня. Можно ли их выразить в радикалах рациональных чисел?
Конечно. Для кубического уравнения существует общая формула, как раз в радикалах (формула Кардано).
@@rupertjunior2070 рациональных
@@FeelUs я что-то никак не пойму, в чем проблема. Возьмите формулу Кардано и решите с помощью нее ваше уравнение. И убедитесь, что везде под радикалами находятся натуральные числа (т.е. частный случай рациональных чисел). Потому что у вас коэффициенты являются целыми числами. А кроме коэффициентов в уравнении ничего нет, это и есть начальные условия задачи. Ну еще там будет мнимая единица под радикалом - это что ли вас смущает?
@@FeelUs , такое решение вас устроит?
x=cbrt(1+sqrt(-7))+cbrt(1-sqrt(-7)).
Здесь
sqrt(x) - квадратный корень (от слов square root),
cbrt(x) - кубический корень (от слов cube root).
Вот, действительный корень уравнения выражен в радикалах рациональных чисел. Кроме радикалов и рациональных чисел, здесь больше ничего нет. Ну, еще арифметические действия.
@@rupertjunior2070 нет, 1+sqrt(-7) - не вещественное. ru.m.wikipedia.org/wiki/Casus_irreducibilis
А почему- бы вначале не начать со 100...
К сожалению, не видно ничего, что профессор пишет на доске. А воспринимать на слух для человека недостаточно подготовленного (как я, например) невозможно.
55:00 товарищ шутит про отрицательные температуры. Сначала появились отрицательные числа, потом градусники.
Алексей Савватеев - Профессор имени Фонда «АЛКОА». На самом деле он там уже не профессор, Савватан уже много лет не пьет, как он сам говорит.
Круто!
Если я не ошибаюсь, то это называется теорема Абеля :-/
С какого возраста / курса стоит смотреть?
после 2го курса
Полез под грузовик, смотрел на кардан, искал там формулу ... :)))
Молодец
Спаибо
"Профессор имени Фонда" - это как?
Присоединюсь к вопросу!!!
SCP
Кто дежурный, почему тряпка сухая?
14:10
Савватеев и Райгородский - очень разные люди и очень одинаковая привычка хрюкать носом.
mrbus2007 лол
ппц дикарство в комментах - вам обратили внимание на привычку, а вы начинаете драться с источником, вот так вот Ассанжа и схватили, с такой же культурой бить
Сергей Назаров ну так и можно ответить, человек поймет, а то сразу накидываться - чертовски сложно на таком организовать цивилизацию
шикарно, например!!
Объясните пожалуйста практическое применение в повседневной жизни или технике теории Галуа .
Шифрование, кодирование, подсчет контрольных сумм (CRC, MD5) и т.д.
практичных применений бесконечно много, ведь это решения уравнений, которые очень важны в физике, программировании, да даже в экономике думаю найдутся уравнения с n > 5
Уравнения такого типа встречаются очень часто. В частности большое количество квантовомеханических задач сводятся к решению т.н. векового или характеристического уравнения, которое как раз и является уравнением указанного типа. Вот только теорема Абеля - Руффини делу не помогает. А вот группа перестановок это отличная штука, не знаю будет ли он про нее говорить.
x=какието ...,что то на что то ,вопрос а как нам задано=0_9,?,корень из мнж...,,,
В теории групп ученики обычно обламывают зубы на смежных классах. То есть, второй лекции из шести. Дальше, обычно - непролазный матан. Посмотрим, как справится Савватеев...
Интересно какой процент людей бесит что Алексей Владимирович маячит перед лицом)
Строго говоря мнимые числа это не числа, а математические комплексы "операция+число" (Операция * Элемент) где операция это квадратный корень а число - некая отрицательная величина. Операция возведения в квадрат является обратной к извлечению квадратного корня, поэтому возводя такой комплекс в квадрат мы в соответствии с теорией групп в силу ассоциативности получаем Операция(-1) * (Операция * Элемент) = (Операция(-1) * Операция) * Элемент = Элемент. То есть возводя мнимое число в квадрат прямая и обратная операции сокращаются и мы получаем саму отрицательную величину. Комплексная математика работает безукоризненно именно в силу этой симметричности прямой и обратной операций. Просто надо помнить что мнимая величина это не просто число, а комплекс "операция+число" и не имеет значения что значение этого комплекса не может быть представлено в виде действительного числа.
Можно комлексные числа рассмотреть как пару вещественных чисел и задать на них две операции. А потом привести всю эту приблуду к алгебраической форме
Речь идет о мнимой единице а не а комплексных числах, которые являются комбинацией действительной и мнимой части и представляются либо в виде пары действительных чисел, либо в полярных координатах. Я имел ввиду что не существует действительного представления числа "i". То есть какое бы вы не выбрали представление числа "i" вы не сможете отмерить линейкой "5i" метров веревки или отвесить "250i" граммов колбасы в магазине.
Муторно даже вникать в такого рода определения =)
По моему мнимая часть чисел это очень хорошая иллюстрация внешнего измерения. Вот пока мы мнимое число не умножим на еще одно мнимое, мы не проявим число в нашем мире. Оно останется где-то в параллельных мирах, и даже хрен знает, большое оно или маленькое. Оно просто невозможно в нашем мире. Очень интересные рассуждения о мире и своем месте в нем можно раздуть из этих мыслей, и вылить не одно море воды по данной теме =) Мне кажется, это достойная тема разговора для дружеских пьянок умных и порядочных людей =)
Глупо пытаться объяснить мнимую величину с позиции вещественных чисел. Это абсолютно иная конструкция, которая живет по своим правилам. Это тоже самое, что пытаться объяснить геометрию Лобачевского с позиции евклидовой геометрии.
Alex Petrov, раз уж вы решили притянуть физику, то отчего же нельзя? весами взвешивайте колбасу, а i-весами взвешивайте i-колбасу. И ни в коем случае колбасу с i-колбасой не кладите в одну сумку, колбасу кладите в сумку, а i-колбасу в i-сумку.
Блин, Савватеев, вы издеваетесь, что ли? Нафига эти длиннющие формулы из википедии, да еще и без вывода??? Неужели тут можно что-то понять? Итальянские математики решали уравнение x^3+px+q=0, к которому можно свести любое кубическое уравнение. Как об этом можно было не сказать?
неосилил. нужна серьезная мат. подготовка
Если бы бабушка была дедушкой, у неё была бы теорема без У.
Это результат Абеля.
Теорема без У.
Пи здесь, пи там сокращается...
Неимоверно растянутая заставка с идиотским отсчётом, ущербный фильтр. Вы в каком пту своих монтажеров нашли?
Получается удивительный факт, для исследуемого уравнения. Корни есть, а формулы для их определения- нет. Странная математика.
математики нет души
души нет математики
математики души нет
нет математики души
души математики нет
нет души математики
3!
Савватеев как математик должен понимать, что если где-то прибыло, значит где-то убыло. Если есть школьники, которые изучают теорию Галуа, то должны быть школьники, которые не умеют складывать дроби. Если бы Савватеев не тянул свой край ввысь, то и противоположный не уходил бы вниз. А самоутверждаться на сирых мира сего - это недостойно ни математика, ни ученого. Они существуют только потому, что есть противоположный убогий край. Математик как-то должен соображать в диалектике.
0 не является натуральным числом
Ноль это знак, типа +/- , . и т.д.
Плохо я выразился, точнее, у отсутствия нет количества
Это вопрос стандарта, в каких то странах считается натуральным, в каких то целым
Читайте Антропософию Р.Штайнера и многое прояснится............
Читайте Антропософию Р.Штайнера и многое прояснится.....
Читайте Антропософию Р.Штайнера и многое прояснится............
Читайте Антропософию Р.Штайнера и многое прояснится.....
Зачем
Арменка, кончай читать всякий бред
У меня 2 знакомых её читали. Один в дурке, другой в исламе.