How to Prove a Function is Uniformly Continuous

Поділитися
Вставка
  • Опубліковано 14 гру 2024

КОМЕНТАРІ • 92

  • @lemyul
    @lemyul 5 років тому +70

    it will probably take me years before this whole analysis course make sense

    • @lemyul
      @lemyul 3 роки тому +11

      @@markdierker4292 about to graduate without fully knowing proofs

    • @Chilliak10
      @Chilliak10 2 роки тому

      agree

    • @shutupimlearning
      @shutupimlearning 2 роки тому

      @@lemyul did you figure out proofs yet?

  • @smoosq9501
    @smoosq9501 3 роки тому +6

    I just wanna say thank you, your videos not only explain everything in detail but also saved me a huge amount of time.

  • @tannerboos2268
    @tannerboos2268 7 років тому +3

    There is a problem with the yellow proof at the end. Consider a=-5. -5

  • @benpct5555
    @benpct5555 3 роки тому +3

    The best 4 minutes I ever spent (2x speed works like a dream)

  • @CREricNoeJimenezValerio
    @CREricNoeJimenezValerio 4 роки тому +3

    Love your proves! Keep it on dude, you are saving lot of asses around the world

  • @rolo3456
    @rolo3456 8 років тому +11

    it finally all makes sense thank you

  • @KevinWeatherwalks
    @KevinWeatherwalks 5 років тому +3

    Since 1/|1+x^2| is bounded above by 1 and |x|/|1+x^2| is bounded above by 1/2 (and similarly for y), will the proof still hold if we had chosen delta = epsilon?

  • @potatojam6519
    @potatojam6519 4 роки тому +2

    So, if I were cluelessly doing this, I could just choose 𝜺 = 𝛿 and in the end see that the |f(x)-f(y)|

  • @蔺美云
    @蔺美云 2 роки тому +2

    This is soooooo helpful. Thank you so much!

  • @kpopaspirations
    @kpopaspirations 3 роки тому +3

    How the heck did you just arbitrarily drop abs(1+ y^2) from the bottom of the fraction?

    • @invanemay6814
      @invanemay6814 3 роки тому +1

      when abs(1+ y^2) drops, all of the expression gets bigger so no problem to drop it eheh

  • @AsaNole
    @AsaNole 6 років тому +1

    Why is the last inequality "less than or equal to 1" instead of strictly less than 1? What I mean is, does there exists a number a such that (|a| / |1+a^2| )= 1?

  • @Fragadagalops
    @Fragadagalops 4 роки тому +2

    you said that we could just "get rid" of the |1+x^2| and |1+y^2| in denominators but you didn't explain it.

    • @Ivan-ob3vk
      @Ivan-ob3vk 4 роки тому

      Well, since it is absolute value it must be positive. And of if it is positive it can only makes that whole fraction smaller number. So if you get rid of it it doesnt really matter.

    • @jorthouben
      @jorthouben 4 роки тому +1

      Ivan Ivan It indeed becomes a smaller number, but we claim that is is greater of equal, right? So how can two numbers suddenly be greater when they become smaller?

    • @zwan1886
      @zwan1886 4 роки тому

      @@jorthouben denominator became smaller makes the fraction bigger

  • @matthutchings8911
    @matthutchings8911 8 років тому +3

    In the proof at the end, shouldn't you be considering the cases where |a| 1? The way you did it means that if a < -1, then |a| > 1 and you can't use the first inequality in case 1.

    • @mu-maths2778
      @mu-maths2778 7 років тому

      Matt Hutchings oh yeah! I get your point. Those cases work only for non-negative numbers. For the whole real line we have to go with cases where a is between -1 & 1 and otherwise. Great observation.

  • @panos.kardatos
    @panos.kardatos 8 років тому +4

    Awesome video, I really liked the way you make the proof at the end of it about 1+1.

  • @H3XED_OwO
    @H3XED_OwO 9 місяців тому

    mr math sorcerer, at 7:30 can we prove this segment by proving the bottom part of the fraction is bigger or equal to the top part?
    what i mean by this is by plugging in any number for 'a' we get a result smaller
    or equal to one

  • @으니-g2l
    @으니-g2l 3 роки тому +1

    Thanks its helpful
    In the last when you claim |a|/|1+a^2|=1,|a|=1,a

  • @viiarush
    @viiarush 6 років тому +2

    Nice, you could've also shown x/1+x^2 as a sin function and hence

  • @javieralonso3949
    @javieralonso3949 7 років тому +3

    how do you know that the delta value is epsilon/2?

  • @mayankjangid1543
    @mayankjangid1543 3 роки тому

    Thanks professor for your videos. They help us a lot. With due respect, your proof for the lemma used is wrong(for the case when a

  • @artsense5061
    @artsense5061 4 роки тому +1

    Where and how did you get delta equals to epsilon over 2?

    • @DarkKittens123
      @DarkKittens123 8 місяців тому

      could just let delta equal n* epsilon at first then when he got to the end of proof just change n to 1/2 as that clearly works nicely with the mod(f(x)-f(y)) being less than epsilon

  • @laflaca5391
    @laflaca5391 9 років тому +3

    very helpful, thank you

  • @omatseyeugen5697
    @omatseyeugen5697 2 роки тому

    any examples of determining if a function is continuous and or discontinuous?

  • @t.arunasivapriyam.sc.2301
    @t.arunasivapriyam.sc.2301 4 роки тому +2

    Thank you sir

  • @Mycrosss
    @Mycrosss 7 років тому

    Um if you decided to set a

  • @stratpap637
    @stratpap637 2 роки тому

    Very good example because the use of triangle inequality and even more the second proof. Thank you!

  • @princesahu7026
    @princesahu7026 4 роки тому +2

    Really helpful..

  • @ArunDwivedi1998
    @ArunDwivedi1998 2 роки тому

    There is A question in my mind as u select epsilon is greater then 0 I agree but by which logic u said that delta will equal to epsilon/2

  • @WickedChild95
    @WickedChild95 8 років тому +1

    Thank you so much!

  • @cnhpuchenliu5123
    @cnhpuchenliu5123 4 роки тому +2

    Thx

  • @eggy60
    @eggy60 8 років тому +31

    immediately frustrated because you figured out delta beforehand and was just like ok there you go. now let's do more redundant stuff to see if it's actually what I put down though I already told you it is.

    • @ElizaberthUndEugen
      @ElizaberthUndEugen 7 років тому +19

      Exactly. Finding the delta is the actual problem. Not showing that the chosen delta works. I fuckin despise these delta epsilon proofs, they make me go insane.

    • @Mycrosss
      @Mycrosss 7 років тому +1

      It's always between 0 and epsilon so in 99% of the cases you just take the middle and it'll work.

    • @canalf007
      @canalf007 7 років тому +3

      you don't need to know the value of delta in terms of epsilon at the begenning of the problem.
      Just get to the fact that |.....|

    • @nickn9040
      @nickn9040 6 років тому +3

      I'm confused. Why is it redundant...? You won't be given delta in an actual problem.. He just said, "this is what I came up with," and showed us how he came up with it.

    • @isinimuthumuni8374
      @isinimuthumuni8374 6 років тому +5

      Uh he did go through how he got that delta through the proof though. He just mentioned the value he got beforehand

  • @c0L0mbiangat0
    @c0L0mbiangat0 4 роки тому

    at 7:14 why can we just simply drop the a^2? btw thank you for this video , helps so much!!

  • @SirGumbi
    @SirGumbi 9 років тому +6

    Just did this problem a few days ago, literally did the exact same thing you did, tehe. :)

  • @vijaysinghchauhan7079
    @vijaysinghchauhan7079 2 роки тому +1

    At 1:49 x,y belongs to A not R.

    • @TheMathSorcerer
      @TheMathSorcerer  2 роки тому

      In this case A = R because our function is from R into R. Thank you for the comment:)

  • @saassas5879
    @saassas5879 5 років тому +11

    You're saving my ass right now lol thank you!

  • @TheMathSorcerer
    @TheMathSorcerer  9 років тому +2

    • @ahmad3652
      @ahmad3652 8 років тому +1

      +The Math Sorcerer um if memory serves the rule I worked out was to check what is the largest number the 1/(1+x^2)+1/(1+y^2) could be which is 2 in this case the dive epsilon by that number and call it delta.

    • @TheMathSorcerer
      @TheMathSorcerer  8 років тому

      +ahmad3652 You forgot the absolute values up top, I agree with your statement though yes.

    • @ahmad3652
      @ahmad3652 8 років тому

      +The Math Sorcerer it's a damn nuisance typing them in but good analysis demands it.

  • @LilMsPersianallity11
    @LilMsPersianallity11 9 років тому +3

    omg youre awesome ! keep up the videos

    • @TheMathSorcerer
      @TheMathSorcerer  9 років тому +1

      Fatemeh Moh Thank you! I'm glad it helped someone:)

  • @masterlanz1038
    @masterlanz1038 4 роки тому

    I am sooo late I have a doubt...i hope you reply.....i understand the proofs...but is there any tips on determining the delta......i understand it depends on the question but some tips on that

  • @MrMQturoring
    @MrMQturoring 7 років тому

    there is any way to know the function uniformly or not without testing?

  • @janah701
    @janah701 8 років тому +1

    what is the difference between uniformly continuous and continuous?

    • @lakers1654
      @lakers1654 5 років тому

      uniformly continuous is over a set of points while continuous only focuses on one point. This is 3 years too late lmao

  • @marccasals6366
    @marccasals6366 8 років тому +1

    Why do you choose delta=epsilon/2?

    • @esakkithirugnanam6626
      @esakkithirugnanam6626 5 років тому

      Only after completing the problem , we can take this. This is one example for how mathematicians do Mathematics.

  • @LordOfNoobstown
    @LordOfNoobstown 4 роки тому

    Why is abs(a)

  • @inesbenbrahim3263
    @inesbenbrahim3263 4 роки тому +1

    EH MERCEEEEEE FRANKIE

  • @Alienman1212
    @Alienman1212 6 років тому +2

    how can you just "drop" parts

    • @christoffelsymbol1631
      @christoffelsymbol1631 6 років тому

      it's possible in inequalities, he replaces condition with a weaker one

    • @XxuplmxX
      @XxuplmxX 6 років тому

      because it's absolute value we know the things he is "dropping" are positive and we also know that the bigger the denominator of a number the smaller the number. So if we're working with inequalities it follows that |x|/ |1+x^2| |1+y^2| < |x|/ |1+x^2|

  • @jiteshjoshisde3154
    @jiteshjoshisde3154 7 років тому

    how we apply this claim herw.. how is |x|

  • @deadlypeanut98peanut57
    @deadlypeanut98peanut57 7 років тому

    at 3:29 why can you just change |Y^2-X^2| to |X^2-Y^2|? Thanks :)

    • @nottaperson
      @nottaperson 7 років тому +1

      The absolute value of the difference of real numbers is a metric on the real numbers, so you may change the order of the terms and obtain an equivalent expression. More simply, notice that the absolute value of a difference gives the distance on a number line between the two values. This distance shouldn't change just because we change the order of the values.
      Ex. 4 - 9 = -5, 9 - 4 = 5, but |-5|=|5| = 5

    • @deadlypeanut98peanut57
      @deadlypeanut98peanut57 7 років тому +1

      Thank you!

  • @kymberleyalexandrie3133
    @kymberleyalexandrie3133 5 років тому

    Why have a UA-cam channel explaining shit if you dont reply to the comments based on the vids

  • @livialopes5682
    @livialopes5682 9 років тому +4

    thanks :)

  • @jamesdigno3969
    @jamesdigno3969 8 років тому

    in your claim after the end of your proof why did you drop the a^2 in |1+a^2| ? And for a>1 why did you drop the 1 in |1+a^2|?

    • @bentowers7382
      @bentowers7382 8 років тому

      +James Digno a^2>=0 for all a in R, so (1+a^2)>=(1) => mod(1+a^2)>=mod(1) thus dividing by the smaller expression will give a greater expression as it is a reciprocal (laws of inequalities).
      A similiar argument will convince you that dropping the 1 will also give the same result.

  • @randomdude9135
    @randomdude9135 4 роки тому

    I still can't see the difference between continuity and uniform continuity. I think I don't understand them correctly. Please please please please please make video on them and show the differences

    • @raichu56k
      @raichu56k 4 роки тому

      he has a video on it

    • @randomdude9135
      @randomdude9135 Рік тому

      I'm your future version. It's both amusing & depressing that you still don't understand them & have to rewatch the video now! Haha

  • @The_Jarico1
    @The_Jarico1 8 років тому

    Great video but please explain how is this function uniformly continuous if when I graph it it does not have a constant slope (isn't that required to be uniformly continuous)

  • @zeeservices4888
    @zeeservices4888 7 років тому +2

    What is the logic of choosing $=€/2

  • @yugandhar59
    @yugandhar59 9 років тому +1

    awesome bro

  • @FugieGamers
    @FugieGamers 7 років тому

    You gave the definition of continuity not uniform continuity?

    • @alexandergroeger857
      @alexandergroeger857 6 років тому

      It is uniform because the function is continuous at any accumulation point y. In other words, you're picking any two points and showing continuity.