Real Analysis | The uniform continuity of sqrt(x).

Поділитися
Вставка
  • Опубліковано 13 гру 2024

КОМЕНТАРІ • 35

  • @goodplacetostop2973
    @goodplacetostop2973 4 роки тому +18

    14:15

    • @bsuperbrain
      @bsuperbrain 4 роки тому +4

      Nope, the 'stop' was cut off. :D

    • @adned6281
      @adned6281 4 роки тому +1

      The first good place to stop: ua-cam.com/video/FhaFewKyp-Q/v-deo.html

    • @goodplacetostop2973
      @goodplacetostop2973 4 роки тому +1

      @@adned6281 Nope, you haven't dug deep enough. Your video is from March 2020 but we can find earlier than that. Look this, this is from January 2020 : ua-cam.com/video/5Xk1SSUuOjU/v-deo.html

    • @adned6281
      @adned6281 4 роки тому

      @@goodplacetostop2973 Wow, you do know your good places to stop.
      Guess my assumption about good place to stop continuity was not justified.

    • @goodplacetostop2973
      @goodplacetostop2973 4 роки тому

      Adned Actually I haven’t found the original good to place... yet. There’s A LOT of videos to go through lol

  • @kinpatu
    @kinpatu 4 роки тому +17

    Love your videos. I wish the YT Algorithm had introduced you earlier.

  • @pierineri
    @pierineri 4 роки тому +5

    In fact |√x-√y|≤√|x-y| for all non-negative x and y. So it's uniformly continuous.

    • @AbdulalimAWAD
      @AbdulalimAWAD 18 днів тому

      That also implies its hölder contionuous

  • @ranitacab
    @ranitacab 3 роки тому +3

    Your videos helps me a lot to read U.A by Stephen Abott, thanks you so much

  • @juanfa98
    @juanfa98 2 роки тому +3

    at 6:22 in your scratch work, aren't you proving that sqrt(x) is a Lipschitz function?
    and all Lipschitz functions are uniformly continuos

  • @amadeutoletole6777
    @amadeutoletole6777 4 роки тому +1

    Excellent lesson!

  • @jimskea224
    @jimskea224 4 роки тому +1

    On the open set of ordinal integers between zeroth and second.

  • @charlottedarroch
    @charlottedarroch 4 роки тому +6

    You could have also picked δ = min{δ_1,δ_2,1} and that still confines x and y to one of [0,2] or [1,inf).

    • @watchaccount
      @watchaccount 4 роки тому

      what if epsilon = 1000000 and delta1 = delta2 = 10?

    • @jonathanjacobson7012
      @jonathanjacobson7012 4 роки тому

      Daniel, what would you do with x=1.5

    • @charlottedarroch
      @charlottedarroch 4 роки тому +1

      @@jonathanjacobson7012 If x = 1.5 and |x-y| < δ = min{δ_1,δ_2,1}, then |x-y| < 1, so y is in (0.5,2.5). If y is in (0.5,2], then both x and y are in [0,2]. If instead y is in (2,2.5), then both x and y are in [1,inf). Either way, choosing δ = min{δ_1,δ_2,1} guarantees that for all positive real numbers x,y with |x-y| < δ, either both x,y are in [0,2], or both x,y in [1,inf), which is sufficient for Michael's argument.

  • @neur303
    @neur303 4 роки тому +1

    Thanks for doing all kinds of tutorials! Even ones that might be not as popular!
    Very appreciated 🙏❤️

  • @1-Tryhxrd
    @1-Tryhxrd Рік тому +1

    But sir what if we choose x in 0,1 and y in 1,+infinity how would your result hold in this case

  • @yazhineet.s3774
    @yazhineet.s3774 4 роки тому +1

    Great problem sir, waiting for more of your physics videos.

  • @greyforget6916
    @greyforget6916 Рік тому

    Thank you so so so much!

  • @uniqueideas3314
    @uniqueideas3314 3 роки тому +1

    Is step function is uniformly continuous

  • @SalomonChing
    @SalomonChing 3 роки тому

    This is the information I was looking for, I had many doubts, thank you very much my friend.✨👍

  • @josephhajj1570
    @josephhajj1570 4 роки тому +3

    What about f(x)=1/x

    • @rogerlie4176
      @rogerlie4176 4 роки тому +2

      Set y = x + ẟ/2 and see what happens with |f(x) - f(y)| when x -> 0⁺.

  • @leonardoavila899
    @leonardoavila899 4 роки тому +1

    Creo que Mr.Penn debe ser más ordenado y escribir un poco más grandes las letras.

    • @zeravam
      @zeravam 4 роки тому

      Michael escribe muy bien y claro, pon la pantalla completa para ver las letras más grandes

  • @chessematics
    @chessematics 4 роки тому +2

    Sir I'm an 8th grader and having problems while factoring cubics and quartics, could you kindly help me

    • @ancientwisdom7993
      @ancientwisdom7993 4 роки тому +3

      When a prof is teaching university curriculum, it is not a proper place to ask for help for middle school stuff. There are literally hundreds of middle school math channels out there.
      If u want to badly ask questions to Michael, pose specific hard factorization problems on his vids where he posts competition math - have a basic sense of propriety.

    • @chessematics
      @chessematics 4 роки тому

      @@ancientwisdom7993 i am glad to see that you have the BASIC SENSE OF PROPRIETY, but if sir agrees then I don't think that your BASIC SENSE OF PROPRIETY will be of great worth

  • @backyard282
    @backyard282 2 роки тому

    All of this complicated equations and dividing into those two cases is unnecessary.
    Just use delta = epsilon^2 and you're basically immediately done.

  • @get2113
    @get2113 4 роки тому

    Consider going directly to absolute continuity, so a function can be recovered by integrating its derivative. Key for calculus.

  • @JB-ym4up
    @JB-ym4up 4 роки тому +1

    UA-cam unsubscribed me. Go figure.