How to Prove that a Sequence of Functions Converges Pointwise

Поділитися
Вставка
  • Опубліковано 18 лис 2024

КОМЕНТАРІ • 40

  • @limitsatinfinity4393
    @limitsatinfinity4393 4 роки тому +5

    Thank you for the explanation. Before watching the video, I spend almost an hour trying to solve the problem. I never realized that the inequality changes after dividing by ln(x). Thanks again

  • @alejandrorodriguez3658
    @alejandrorodriguez3658 4 роки тому +18

    Keep doing this man, u r saving my grades

  • @berke-ozgen
    @berke-ozgen 11 місяців тому

    This is art. Thanks for sharing!

  • @algorithmo134
    @algorithmo134 3 роки тому

    is there a playlist to this video? thanks

  • @sunilrampuria9339
    @sunilrampuria9339 5 років тому +3

    hi, the convergence isn't uniform but i find the explanation to be a bit incomplete, your explanation works on this case, but not when the interval is [0,1). In this interval too the sequence of functions doesn't converge uniformly, and it's easy to prove via contradiction.

  • @Dil_pickles
    @Dil_pickles 4 роки тому +2

    youre the best. your videos have helped me way too many times. I'd give this video 2 likes if i could

  • @Saeed-Patel-01
    @Saeed-Patel-01 3 роки тому

    if fn defined on [0,3/4] can we say it coverges uniformly and how to prove that?

  • @sirroccosquall
    @sirroccosquall 4 роки тому +2

    Cheers for this you absolute legend!

  • @codystene3022
    @codystene3022 8 місяців тому

    Is this not the definition of uniform convergence? I am pretty sure pointwise has a different definition.

  • @funnywaves8765
    @funnywaves8765 4 роки тому +2

    Super! Thank you.

  • @davibernardolima7869
    @davibernardolima7869 4 роки тому

    Thank you so much!

  • @ДалерСаттаров-х2ю
    @ДалерСаттаров-х2ю 4 роки тому +1

    oh man U are great THANK U!!!!!!!!!!!!

  • @cndler23
    @cndler23 4 роки тому +1

    this is really advanced

  • @danbrown6698
    @danbrown6698 2 роки тому

    Good job

  • @michaelkievits7073
    @michaelkievits7073 4 роки тому +1

    crystal clear

  • @christinabeeee
    @christinabeeee 5 років тому

    By choosing N = ln epsilon / ln x, isn't that making N depend on x?

    • @nickhaas7433
      @nickhaas7433 5 років тому +10

      Yeah, that's why it converges pointwise and not uniformly

    • @official_minyoung
      @official_minyoung 7 місяців тому

      @@nickhaas7433I do know that in the definition of pointwise convergence, the N depends on x. However, I’m still curious if that proof is sufficient enough to say it doesn’t converge uniformly. In the video, he chose N larger than lnε/lnx, and it came to my thought that there could be a N that is larger than lnε/lnx and is constant within x in (0,1). Shouldn’t we find a counterexample of N to prove that the sequence of function does not converge uniformly?

  • @ned.5326
    @ned.5326 3 роки тому +1

    THANKS DUDE UR GREAT

  • @obasimatictutorial
    @obasimatictutorial 5 років тому +1

    Nice one sir

  • @lit22006
    @lit22006 2 роки тому

    what if it was the open set (0,1) ?

    • @berke-ozgen
      @berke-ozgen 11 місяців тому +1

      then just focus on 3rd condition.

  • @joshbolton2782
    @joshbolton2782 Рік тому +1

    Thank you Thank you Thankyou thank you Thank you Ty tytytytyttyyt

  • @Pannafreestyle
    @Pannafreestyle 4 роки тому

    love you bro

  • @ZeonLP
    @ZeonLP 4 роки тому +1

    Math is love

  • @smoosami1024
    @smoosami1024 6 років тому +1

    Can you explain(Q,+)is not cyclic?

    • @garrettthompson3286
      @garrettthompson3286 3 роки тому

      If (Q, +) were cyclic, it would have a generator that generates all positive rationals. Is there a smallest positive rational number?

  • @smoosami1024
    @smoosami1024 6 років тому +1

    Quickly please i have exam tomorrow