Can you find Radius of the circle? | (Intersecting Chords) |

Поділитися
Вставка
  • Опубліковано 2 лис 2024

КОМЕНТАРІ • 47

  • @Brotherman7
    @Brotherman7 2 місяці тому +5

    I’m here to be first.

    • @PreMath
      @PreMath  2 місяці тому

      Glad to hear that!
      Thanks ❤️

    • @alphalunamare
      @alphalunamare 2 місяці тому

      Is life so dull and important that such a thing even registers?

  • @abeonthehill166
    @abeonthehill166 Місяць тому

    Thanks for sharing Professor !

  • @laxmikantbondre338
    @laxmikantbondre338 2 місяці тому +1

    After finding x = 7, you can use formula for perpendicular chords
    r2=(x2+y2+z2+w2)/4
    So
    r2=(9+16+81+144)/4
    r2=250/4
    r=5√10/2

  • @ОльгаСоломашенко-ь6ы
    @ОльгаСоломашенко-ь6ы 2 місяці тому +4

    Можно найти радиус по формуле R=a*b*c/(4*S) для ∆DCB. Стороны находим по теореме Пифагора, S=0.5 * DC*PB=78, CB=4√10, DB=15, R=14*4√10*15/(4*78)=2,5√10.

  • @joeschmo622
    @joeschmo622 2 місяці тому

    ✨Magic!✨

  • @devondevon4366
    @devondevon4366 2 місяці тому +1

    Congratulations on 400k subscribers, well deserved, great channel

    • @PreMath
      @PreMath  2 місяці тому

      Many thanks dear❤️🙏

  • @syphaxjuba8420
    @syphaxjuba8420 2 місяці тому

    merci beaucoup sire excellente exercice

  • @jamestalbott4499
    @jamestalbott4499 2 місяці тому

    Thank you!

  • @marcgriselhubert3915
    @marcgriselhubert3915 2 місяці тому +2

    AP = 3 (in triangle APC)
    Then 3.(x + 5) = 4.(2.x -5) (chords th.), giving that x = 7. So AP = 3, BP = 12, DP = 9, CP = 4
    We use then an orthonormal center P and first axis (PB)
    We have A(-3; 0) B(12, 0) C( 0; 4) D(0; -9)
    The equation of the circle is x^2 + y^2 + a;x + b.y + c = 0
    A and B are on the circle, so 9 -3.a + c = 0 and 144 + 12.a +c = 0, giving c = - 36 and a = -9.
    C is on the circle, so 16 + 4.b - 36 = 0, giving that b = 5.
    The equation of the circle is x^2 + y^2 -9.x +5.y -36 = 0, or (x -9/2)^2 + (y +5/2)^2 = 250/4
    So the radius of the circle is sqrt(250/4) =
    (5/2).sqrt(10).

    • @PreMath
      @PreMath  2 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @alexniklas8777
    @alexniklas8777 2 місяці тому

    (x+5)3=(2x-5)4
    x= 7; PB= 12; PD= 9;
    BD= 15; AD= 3√9.
    Let's connect points A and B with points D and O.

  • @hongningsuen1348
    @hongningsuen1348 2 місяці тому +1

    1. Use intersecting chords theorem to find x = 7.
    2. Use Pythagoras theorem to find BC = 4sqrt(10) and BD = 15 while BP = 12.
    3. Use area formula (area = 1/2 base x height) to find area of triangle BCD = (1/2)(13)(12) = 78.
    4. Use circumradius formula for triangle BCD = abc/4xarea = (13)(15)(4sqrt10)/(4)(78) = (5sqrt10)/2.

  • @santiagoarosam430
    @santiagoarosam430 2 місяці тому

    El triángulo APC es rectangular→ Si AC=5 y PC=4→ AP=3→ Potencia de P respecto a la circunferencia =3(X+5)=4(2X-5)→ X=7→ AB=3+12=15 ; CD=4+9=13→ Si Q es la proyección ortogonal de P sobre el diámetro horizontal→ En el triángulo OQC: OQ²+QC²=OC²=r²→ (9/2)²+(13/2)²=r²→ r=(5√10)/2 ud.
    Gracias y saludos.

  • @aljawad
    @aljawad 2 місяці тому

    After finding the value of x, I solved the problem by rotating the figure so that AB coincides with the X-axis and CD with the Y-axis and point P at the origin. Now Boeing the 4 points are at the circumference of a circle, I proceeded to solve for the equation of that circle.

  • @prossvay8744
    @prossvay8744 2 місяці тому +1

    In ∆APC
    AP^2+CP^2=AC^2
    AP^2+4^2=5^2
    AP=√5^2-4^2=3
    (AP)(BP)=(CP)(DP)
    3(x+5)=4(2x-5)
    So x=7
    BP=7+5=12
    DP=2(7)-5=14-5=9
    Connect O to E (E middle AB and OE right AB )
    AE=BE=15/2
    Connect O to F (F middle CD and right CD)
    CF=DF=13/2
    PF=9-6.5=2.5
    Connect O to B
    In ∆ OBE
    OE^2+BE^2=OB^2
    (2.5)^2+(7.5)^2=r^2
    So r=5√10/2 units=7.91.units.❤❤❤

  • @giuseppemalaguti435
    @giuseppemalaguti435 2 місяці тому +1

    Teorema delle corde..4:3=(x+5):((2x-5)...8x-20=3x+15..x=7..il triangolo inscritto AOB ha lati 15,√90,15..r=abc/4A=225*√90/4*67,5=225√90/270=5√90/6=5√10/2

    • @PreMath
      @PreMath  2 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @MrPaulc222
    @MrPaulc222 2 місяці тому

    PA = 3, due to 3,4,5.
    3(x+5) = 4(2x-5)
    3x + 15 = 8x - 20
    3x = 8x - 35
    x = 7
    Make the midpoint of AB, M.
    AB = 7+5+3 = 15
    Move AB down to lie across the diameter. Either side of the other chord, it now has lengths of 12+a and 3+a.
    It bisects the other chord (DC) which is 14 - 5 + 4 long, so 13/2 on each side of the newly positioned AB. Although AB is 15+2a long, is is also 2r. We now need to find the length of a.
    (a+12)(a+3) = (13/2)(13/2) will find length a.
    a^2 + 15a + 36 = 169/4
    4a^2 + 60a + 144 = 169
    4a^2 + 60a - 25 = 0
    (-60+or-sqrt(3600 - 4*4*-25))/8 = a
    (-60+or-sqrt(4000))/8 = a
    (-60+or-4*sqrt(250))/8 = a
    Discard the minus result as it will be a negative value.
    (-15+sqrt(250))/2 = a
    (-15+5*sqrt(10))/2 = a
    a = (5*sqrt(10) - 15)/2 = 0.4057 (rounded).
    the diameter is 15+2a, so r is 7.5+a.
    r = 7.9057 (rounded)
    Just checked the video. Different paths, same conclusion.

  • @Emerson_Brasil
    @Emerson_Brasil 2 місяці тому

    Basta usar esse teorema quando as cordas são perpendiculares:
    CP²+DP²+AP²+PB²=4R², onde R é o raio do círculo.

  • @phungpham1725
    @phungpham1725 2 місяці тому

    1/ Note that the two triangles APC and DPB are 3/4/5 triplets.
    2/ x=7-> PB=12 ->PD=9 and BD=15
    Because AB= 15 too, so the triangle ABD is an isosceles one, so:
    Just draw the diameter BB’, -> BB’ is the perpendicular bisector of the chord AD.
    We have:
    sqAD=sqAP+sqBD=9+81=90
    AD=3sqrt10
    Label the angle ABB’=alpha
    We have: Angle ADP=angleABB’=alpha( having sides perpendicular)
    -> cos alpha=PD/AD=3/sqrt10
    Focus on the triangle B’AB
    AB/BB’= cos alpha-> BB’=AB/cos alpha
    2R=15/(3sqrt10)-> R=5sqrt10/2= 7.91 untd😅😅😅

  • @devondevon4366
    @devondevon4366 2 місяці тому

    7.91
    AP = 3 (3-4-5) right triangle
    3(x+5) = 4(2x-5) intersection chord theorem
    3x + 15 = 8x -20
    35 = 5x
    x =7
    PB = 12 (7+5)
    PD = 9
    AB=15, hence the center = 7.5, but since AP = =3, its center is from CD , let label it RS = 4.5 (7.5 -3)
    CD =13, hence the center = 6.5
    Draw a line from the center of the CD to the circle's center; the distance is 4.5
    Draw a line from C to O , this is the radius
    r^2 = 4.5^2 + 6.5^2
    r =7.91

  • @alphalunamare
    @alphalunamare 2 місяці тому

    I like these videos. They expose my Hubris that cost many exams 🙂

  • @sorourhashemi3249
    @sorourhashemi3249 2 місяці тому

    If in the circle we have 2 perpendicular across each other , the formula is 4r^2=the sum of Square of each side.i.e= 4^2+9^2+12^2+3^2==>r=7.90

  • @rgcriu2530
    @rgcriu2530 2 місяці тому

    Teorema de Faure 4R²=a²+b²+c²+d²

  • @jimlocke9320
    @jimlocke9320 2 місяці тому

    Alternative solution: Construct OD, which is also a radius and is the hypotenuse of ΔOFD. Length DF = 13/2 and length OF = 15/2 - 3 = 9/2. Applying the Pythagorean theorem, r² = (13/2)² + (9/2)² = 169/4 + 81/4 = 250/4 and, after simplifying, r = (5√(10))/2, as PreMath found from ΔOEB. Note that ΔOFC can also be used, but is congruent to ΔOFD. Similarly, ΔOEA is congruent to PreMath's ΔOEB.

  • @pralhadraochavan5179
    @pralhadraochavan5179 2 місяці тому

    Good evening sir

  • @lasalleman6792
    @lasalleman6792 2 місяці тому

    Start with the intersecting chord theorum. Do the algebra. X = 7. Thus AP is 3, PB is 12, CP is 4 , PD is 9. Next, square each element, then add them together. Comes out to 250. Then, divide by 4, get square root of quotient. Makes r = 7.0956. Can't remember the name of the formula or who discovered it.

  • @coolingicon48
    @coolingicon48 2 місяці тому

    Need to connect with you how ?

  • @murdock5537
    @murdock5537 2 місяці тому +1

    3(x + 5) = 4(2x - 5) → x = 7 → r = √((13/2)^2 + (9/2)^2) = 5√10/2

    • @PreMath
      @PreMath  2 місяці тому +1

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 2 місяці тому +2

    Let's find the radius:
    .
    ..
    ...
    ....
    .....
    The triangle ACP is a right triangle, so we can apply the Pythagorean theorem:
    AP² + CP² = AC²
    ⇒ AP² = AC² − CP² = 5² − 4² = 25 − 16 = 9 ⇒ AP = 3
    By using the intersecting chords theorem we obtain:
    AP*BP = CP*DP
    3*(x + 5) = 4*(2*x − 5)
    3*x + 15 = 8*x − 20
    35 = 5*x
    ⇒ x = 7
    Now let's assume that O is the center of the coordinate system and that AB is parallel to the xaxis. Since CD is perpendicular to AB, CD must then be parallel to the y-axis. Therefore we can conclude:
    xB = AB/2 = (AP + BP)/2 = [3 + (x + 5)]/2 = [3 + (7 + 5)]/2 = 15/2
    yC = CD/2 = (CP + DP)/2 = [4 + (2*x − 5)]/2 = [4 + (2*7 − 5)]/2 = 13/2
    yB = yC − CP = 13/2 − 4 = 13/2 − 8/2 = 5/2
    xC = AP − xB = 3 − 15/2 = 6/2 − 15/2 = −9/2
    Now we are able to calculate the radius R and to check the result:
    R² = xB² + yB² = (15/2)² + (5/2)² = 225/4 + 25/4 = 250/4 ⇒ R = (5/2)√10
    R² = xC² + yC² = (−9/2)² + (13/2)² = 81/4 + 169/4 = 250/4 ⇒ R = (5/2)√10 ✓
    Best regards from Germany

    • @PreMath
      @PreMath  2 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @michaeldoerr5810
    @michaeldoerr5810 2 місяці тому

    The radius is 1/2[5*sqrt(10)]. I am glad that I did my own sanity check on my work. I think that you should create of platliat that make use of intersecting chirds theorem as well perpendicular busector theorems. Or playlists that involve a combination of at least two or three theorems.

    • @PreMath
      @PreMath  2 місяці тому

      Nice suggestion
      Thanks for the feedback ❤️

    • @michaeldoerr5810
      @michaeldoerr5810 2 місяці тому +1

      I am trying to be a mathematician. And your channel and but one of DOZENS that I am making use of!!!

    • @PreMath
      @PreMath  2 місяці тому

      @@michaeldoerr5810
      Super!
      Best wishes😀❤

  • @alphalunamare
    @alphalunamare 2 місяці тому

    I need help here.

  • @Birol731
    @Birol731 2 місяці тому

    My way of solution ▶
    We can find [AP] by using the Pythagoream theorem:
    CA²= AP²+PC²
    [PC]= 4
    [CA]= 5
    5²= AP²+4²

    [AP]= 3
    According to the intersecting chords theorem :
    [AP]*[PB]= [CP]*[PD]
    [AP]= 3
    [PB]= x+5
    [CP]= 4
    [PD]= 2x-5

    3*(x+5)= 4*(2x-5)
    3x+15= 8x-20
    5x= 35
    x= 7
    [AB]= [AP]+[PB]
    [AB]= 3+7+5
    [AB]= 15 length units
    [CD]= [CP]+[PD]
    [CD]= 4+(2*7-5)
    [CD]= 13 length units
    I) Let's consider the triangle ΔAOB:
    [AO]= [OB]= r
    the height of this isosceles triangle is y and would divide the base [AB] in two equal parts:
    [EO]= y
    [AE]= [EB] = 15/2
    E ∈ [AB]
    if we apply the Pythagorean theorem for the ΔOBE:
    [EO]²+[BE]²= [OB]²
    [OB]= r
    [EO]= y
    [BE]= 15/2

    y²+(15/2)²= r²
    II) if we consider the second isosceles triangle ΔCDO:
    [OC]= [DO]= r
    F ∈ [CD]
    [CF]= [FD]= 13/2
    [PF]=[EO]
    [PF]= y

    4+y= [FD]
    4+y= 13/2
    y= 13/2 - 4
    y= 5/2
    if we replace the y value in the Pythagorean theorem above, we get:
    y²+(15/2)²= r²
    (5/2)²+225/4= r²
    r²= 250/4
    r= √250/2
    r= √5²*10/2
    r= 5√10/2
    r≈ 7,9057 length units

  • @Kasleyar
    @Kasleyar 2 місяці тому

    2 circle in a square

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 2 місяці тому

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) AP^2 = 5^2 - 4^2 ; AP^2 = 25 - 16 ; AP^2 = 9 ; AP = 3
    02) 3 * (x + 5) = 4 * (2x - 5) ; 3x + 15 = 8x - 20 ; 5x = 35 ; x = 35 / 5 ; x = 7
    03) AB = 15
    04) CD = 13
    05) OD^2 = 4,5^2 + 6,5^2 ; OD^2 = 20,25 + 42,25 ; OD^2 = 62,5
    06) OD = R
    07) R = sqrt(62,5)
    08) R ~ 7,905 lin un
    OUR ANSWER : Radius equal sqrt(62,5) Linear Units or ~ 7,905 Linear Units.

  • @AbcXyz-hr8bw
    @AbcXyz-hr8bw 2 місяці тому +1

    X=7

    • @PreMath
      @PreMath  2 місяці тому

      Thanks ❤️

  • @frankyboy1131
    @frankyboy1131 2 місяці тому

    The figure is absolutely unclear.