Can you find area of the Green shaded region? | (Semicircle) |

Поділитися
Вставка
  • Опубліковано 20 січ 2025

КОМЕНТАРІ • 60

  • @jamestalbott4499
    @jamestalbott4499 4 місяці тому +2

    Thank you!

    • @PreMath
      @PreMath  4 місяці тому

      You are very welcome!
      Thanks ❤️

  • @manuelantoniobahamondesa.3252
    @manuelantoniobahamondesa.3252 4 місяці тому +1

    Excelente!

  • @quigonkenny
    @quigonkenny 4 місяці тому +3

    Let AB = x. As ∠CAB = 60°, ∆ABC is a 30-60-90 special right triangle, ∠BCA = 30°, CA = 2x, and BC = √3x.
    Draw DE. As ∠CDE = ∠ABC = 90° and ∠ECD is common, ∆CDE is similar to ∆ABC. As EC = 2r, DE = EC/2 = r and CD = √3r.
    BC/CD = CA/EC
    (√3+2r)/√3r = (6+√3r)/2r
    2r(√3+2r) = √3r(6+√3r)
    2√3r + 4r² = 6√3r + 3r²
    r² - 4√3r = 0
    r(r-4√3) = 0
    r = 4√3
    As ∠ECD = 40°, ∠EOD = 2(30°) = 60°. Therefore ∠COD = 180°-60° = 120°. The green area will be equal to the area of the sector subtended by arc DC minus the area of triangle ∆COD.
    Geeen area:
    Aɢ = (120/360)πr² - r²sin(120°)/2
    Aɢ = πr²/3 - √3r²/4
    Aɢ = π(4√3)²/3 - √3(4√3)²/4
    Aɢ = 48π/3 - 48√3/4
    Aɢ = 16π - 12√3 ≈ 29.48 sq units

    • @PreMath
      @PreMath  4 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @marioalb9726
    @marioalb9726 4 місяці тому +2

    Right triangle ABC:
    (6+2rcos30°).cos30°=√3+2r
    6√3/2 + 3/2 r = √3 + 2r
    ½ r = 6√3/2 - √3
    r = 6√3 - 2√3 = 4√3 cm
    Círcular segment area:
    A = ½ . r² . ( α - sinα )
    A = ½ . 48 . (120°-sin120°)
    A = 29,48 cm² ( Solved √ )

  • @KipIngram
    @KipIngram 3 місяці тому

    Below D will denote the y coordinate of the point D in the diagram. Reflect the entire figure in the horizontal axis. Then we can use the law of sines to write
    2*D/sin(60) = 2*R
    Note also that the triangle inscribed in our full circle is an equilateral triangle, so DC = 2*D. Now we can use standard triangle trig to write
    (6 + 2*D)*cos(30) = sqrt(3) + 2*R
    (6 + 2*R*sin(60))*cos(30) = sqrt(3) + 2*R
    6*sin(60) + 2*R*sin^2(60) = sqrt(3) + 2*R
    This is easily solved for R to yield R = 4*sqrt(3). Note that R^2 = 48.
    Now, the area of an equilateral triangle inscribed in a circle is given by
    Area = 3*R^2*sqrt(3)/4
    Area = 48*3*sqrt(3)/4 = 36*sqrt(3)
    We can subtract this from the circle area and divide by three to get our desired result:
    Green_Area = R^2*(pi - 3*sqrt(3)/4)/3
    Green_Area = 29.4808
    Q.E.D.

  • @robertlynch7520
    @robertlynch7520 4 місяці тому +1

    Basically ... used a different identity to get the same answer.
    For ALL right triangles, the interior height [H] is [AB/C]
    from that, and from the congruence of 30-60-90 triangles through the diagram,
    all the rest of the measurements are easy.

    • @PreMath
      @PreMath  4 місяці тому

      😀
      Thanks for the feedback ❤️

  • @marioalb9726
    @marioalb9726 4 місяці тому +1

    Right triangle ABC:
    (√3 + 2r)/cos30° = 6+2r.cos30°
    2 + 4/√3 r = 6 + √3 r
    4/√3 r - 3/√3 r = 6 - 2 = 4
    r = 4√3 cm
    Círcular segment area:
    A = ½ . r² . ( α - sinα )
    A = ½ . 48 . (120°-sin120°)
    A = 29,48 cm² ( Solved √ )

    • @PreMath
      @PreMath  4 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @marioalb9726
    @marioalb9726 4 місяці тому +4

    Pytagorean theorem, right triangle ABC:
    (6+2rcos30)²=(√3+2r)²+((√3+2r)/tan60)²
    (6+√3r)²=(√3+2r)²+(1+2/√3 r)²
    6²+12√3r+3r²=(3+4√3r+4r²)+(1+4/√3 r+4/3 r²)
    7/3 r² - 11,547r - 32 = 0
    r² - 4,9487 r - 13,7143 = 0
    r = 6,9282 cm = 4√3 cm
    Círcular segment area:
    A = ½ . r² . (α-sinα)
    A = ½ . 48 . (120°-sin120°)
    A = 29,48 cm² ( Solved √ )

    • @PreMath
      @PreMath  4 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @juanalfaro7522
    @juanalfaro7522 4 місяці тому +1

    I obtained the same result, but I did not use the cosine rule to determine X, though I drew the triangle to find the angle COD (OD=OC=R -> ODC = OCD = 30 -> COD = 180-2*30 = 120 -> EOD = 180-120 = 60). I used (6+X) * cos (30) = √3 + 2R = 3√3 + √3/2 * X and then X = 2R * cos (30) = √3R. Then √3 + 2R = 3√3 + 3/2 * R --> r/2 = 2√3 -> R = 4√3; then X=R√3 = 12 and did everything else as in the video.

    • @PreMath
      @PreMath  4 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @Celanish
    @Celanish 4 місяці тому

    Grazie !

  • @josephsalinas6725
    @josephsalinas6725 4 місяці тому +1

    O professor resolvendo parece tão fácil !

    • @PreMath
      @PreMath  4 місяці тому

      Gracias, querido❤️

  • @-wx-78-
    @-wx-78- 4 місяці тому

    Draw EF || AC and EG || AB, △ABC is split in several similar triangles (and parallelogram): △ABC ~ △EDC ~ △FBE ~ △GEC ~ △GDE. From △FBE EF = AG = 2, therefore DG = AD−AG = 4. From △CDE DE = r; on the other hand, r² = DE² = CD·DG = r√3·4 as an altitude in right triangle, hence r = 4√3. Now is the time for circular segment area formula: a = ½r²(θ−sin θ), where θ is obviously ⅔π.

    • @PreMath
      @PreMath  4 місяці тому

      Thanks for sharing ❤️

  • @JSSTyger
    @JSSTyger 4 місяці тому +1

    You're a great teacher. It takes alot of work to go through these and until you've made sure its right. I just did it but found two dumb errors (one was π(d/2)²(1/3) = πd²/6) but ended up ironing it all out to get it right.

    • @PreMath
      @PreMath  4 місяці тому +1

      Glad to hear that!
      Thanks for the feedback ❤️🙏

  • @marcgriselhubert3915
    @marcgriselhubert3915 4 місяці тому +1

    The triangle COD is isosceles (OC = OD = R the radius of the semi circle), so angle ODC = angle OCD = 30° and the angle COD = 120°.
    In triangle COD: CD^2 = OD^2 + OC^2 - 2.OC.OD.cos(120°) =R^2 + R^2 - 2.R.R.(-1/2) = 3.R^2, so CD = sqrt(3).R and CA = 6 + sqrt(3).R
    In triangle ABC: cos(angle BCA) = cos(30°) = sqrt(3)/2 = CB/CA = (sqrt(3) +2.R)/(6 + sqrt(3).R), giving that R = 4.sqrt(3).
    The area of thiangle COD is (1/2).OC.OD.sin(angle COD) = (1/2).(4.sqrt(3)).(4.sqrt(3).(sqrt(3)/2) = 12.sqrt(3)
    The area of sector EOD is Pi.((4.sqrt(3))^2).(60°/360°) = 8.Pi
    The area of the whole semi circle is Pi.((4.sqrt(3))^2).(1/2) = 24.Pi
    So the green area is 24.Pi - 8.Pi - 12.sqrt(3) = 16.Pi -12.sqrt(3).
    Finally, I see that I did it just like you did...

    • @PreMath
      @PreMath  4 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @montynorth3009
    @montynorth3009 4 місяці тому +1

    Joining E to D, EDC = 90 degrees in semicircle.
    Triangle EDC, sin 60 = DC / 2r.
    DC = 2r x sin 60 = 1.732r.
    Triangles EDC & ABC are similar.
    So DC / EC = BC / AC.
    1.732r / 2r = (1.732 + 2r) / (6 + 1.732r).
    Cross multiply.
    4r^2 + 3.464r = 3r^2 +10.392r.
    Divide both sides by r.
    4r + 3.464 = 3r +10.392.
    r = 6.928.
    Area triangle COD = 0.5 x 6.928^2 x sin 120.
    20.783.
    Area sector = Pi x 6.928 x 6.928 / 3.
    50.263.
    Green segment = 50.263 - 20.783.
    29.48.

    • @PreMath
      @PreMath  4 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @prossvay8744
    @prossvay8744 4 місяці тому +2

    Angle BAC=60°
    Angle ACB=30°
    Connect E to D
    So ∆ CDE is right triangle
    Angle DCE=30°
    Angle CDE=60°
    So (30° ; 60°; 90°)
    BC=2r
    Hence DE=r and CD=r√3
    AC=6+r√3 ; BC=√3+2r
    In∆ ABC
    Siin,(60°)=(√3+2r)/6+r√3)
    So r=4√3
    Green shaded area=1/2(π)(4√3)^2-(60°/360°)(π)(4√3)^2-1/2(4√3)^2sin(120°=16π-12√3=29.48 square units.

    • @PreMath
      @PreMath  4 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @michaeldoerr5810
    @michaeldoerr5810 4 місяці тому +3

    The area is 4[4pi-3*sqrt(3)]. I did a sanity check on my work twice. Also regarding yesterday's video, I got called out for stating the wrong answer. I put down a "I stand corrected" response. I am just letting other people know.

    • @PreMath
      @PreMath  4 місяці тому

      Thanks for sharing ❤️

  • @sergeyvinns931
    @sergeyvinns931 4 місяці тому

    R=4\/3; Area=1/2R^2(pi*a/180-sina)=1/2*48(2pi/3-\/3/2)=24(4pi-3\/3)/6=4(4*3,1415-3*1,732)=29,48.

  • @phungpham1725
    @phungpham1725 4 місяці тому +1

    1/ The triangle CDE is a 30/90/60 special one, so
    CE=2r, ED=r and CD=rsqrt3.
    2/ The quadrilateral ABED is cyclic, so
    CDxCA=CExCB
    -> rsqrt3(rsqrt3+6)=2r(2r+sqrt3)
    -> r=4sqrt3
    -> CD=12
    3/ Area of the triangle DOC:
    Drop the height OH to CD.
    Note that angle DOC= 120 degrees so angle DOH=60 degrees->OH=r/2=2sqrt3
    Area of triangle DOC= 1/2x2sqrt3x12=12sqrt3
    Area of sector DOC= pi. sqr/3= 16 pi
    Area of the green segment=16 pi-12sqrt3=29.48 sq units😅😅😅

    • @PreMath
      @PreMath  4 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @johnbrennan3372
    @johnbrennan3372 4 місяці тому

    Triangle abc having angles 30,60 and 90 ,ac=(4r/root3)+2 so dc = (4r/root3)-4. In the triangle dec with angles 30,60 and 90 , de=r,ec=2r and dc = (4r/root3)-4.. Using pythag. You get r=4root 3 etc. It involved tedious use of quadratic formula.

    • @PreMath
      @PreMath  4 місяці тому

      Thanks for sharing ❤️

  • @zdrastvutye
    @zdrastvutye 4 місяці тому

    there are 2 solutions, just try this:
    10 vdu5:for a=0 to 15:gcola:print a;:next a
    20 print "premath-can you find area of the green shaded region"
    30 @zoom%=1.4*@zoom%:dim x(3),y(3):rem print"test";sin(rad(45)),"%",cos(rad(45))
    40 l1=sqr(3):l2=6:w=60:sw=l1^2/(l1+l2)/10:r=sw:gosub 80:goto 130
    50 h=(r*2+l1)/tan(rad(w)):xm=l1+r:dgu1=(l2*sin(rad(w))-xm)^2/l2^2
    60 dgu2=(h-l2*cos(rad(w)))^2/l2^2:dgu3=r*r/l2^2
    70 dg=dgu1+dgu2-dgu3:return
    80 gosub 50
    90 dg1=dg:r1=r:r=r+sw:if r>100*l1 then stop
    100 r2=r:gosub 50:if dg1*dg>0 then 90
    110 r=(r1+r2)/2:gosub 50:if dg1*dg>0 then r1=r else r2=r
    120 if abs(dg)>1E-10 then 110 else print "r=";r:return
    130 print "Loesung1":gosub 140:goto 200
    140 xd=l2*sin(rad(w)):yd=h-l2*cos(rad(w)):l3=sqr((xd-l1-2*r)^2+yd^2)
    150 l3n=h/cos(rad(w))-l2:fe=l3/l3n:fe=(1-fe)*100:print "der fehler=";fe;"%"
    160 ym=0:xc=l1+2*r:yc=0:rem das skalarprodukt berechnen ***
    170 dx1=xd-xm:dy1=yd-ym:dx2=xc-xm:dy2=yc-ym
    180 zx=dx1*dx2:zy=dy1*dy2:n=sqr(dx1^2+dy1^2)*sqr(dx2^2+dy2^2)
    190 we=acs((zx+zy)/n):ar=r*r*(we/2-sin(we/2)*cos(we/2)):print "die flaeche="; ar:return
    200 print "loesung 2":r=r+sw:gosub 80:gosub 140:masx=1200/(l1+2*r):masy=850/h
    210 if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @satrajitghosh8162
    @satrajitghosh8162 4 місяці тому

    Radius of this circle be r
    ∆ EDC is right angular.
    DC = EC * cos (π/6) = √ 3 * r
    BC = AC * sin (π/3)
    = ( 6 + √3 * r)* ( √3 /2)
    2 ( √ 3 + 2 r) = 6 √3 + 3 r
    r = 4 √ 3
    Arc of Green region sweeps
    π - 2 * π/6 = 2π/3 radian with centre of circle.
    If r be the radius of this circle
    Green Area = r ^2 * ( π /3 - √3 /4)
    = 48 ( π /3 - √3 /4)
    = 16 π - 12 √3

  • @kunalchakraborty9735
    @kunalchakraborty9735 4 місяці тому

    Draw a perpendicular from o to DC
    At F. Then
    FC/ r = cos 30
    FC = sqrt(3)*r /2
    so DC=r * sqrt(3)
    The remaining calculation are same

    • @PreMath
      @PreMath  4 місяці тому

      Thanks for sharing ❤️

  • @santiagoarosam430
    @santiagoarosam430 4 місяці тому +1

    Las proyecciones ortogonales de D sobre AB y BC son F y G, respectivamente.FD=BG=AD*√3/2=3√3---> EG=BG-BE=2√3 ---> Ángulo BCA=30º--->BOD=60º y. DOCr120º---> OD=r--->GO=r/2 y GD=r√3/2---> r=2*EG=2*2√3=4√3 ---> Área verde =(πr²/3)-(OC*GD/2) =16π-12√3 ud².
    Gracias y saludos.

    • @PreMath
      @PreMath  4 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @scottdort7197
    @scottdort7197 4 місяці тому

    I solved by taking the 30-60-90 proportions of the 2 triangles. That quickly yield the diameter of the circle as 8*sqrt3. Divide that by 2 to get the radius. Then do was premath did to get the resultant areas.

    • @PreMath
      @PreMath  4 місяці тому

      Thanks for the feedback ❤️

  • @murdock5537
    @murdock5537 4 місяці тому +1

    Nice! φ = 30° → cos⁡(φ) = √3/2 = (2r + √3)/(6 + r√3) → r = 4√3 → DOC = 4φ →
    sin⁡(4φ) = sin⁡(6φ - 4φ) = sin⁡(2φ) = cos⁡(φ) = √3/2 → area ∆ DOC = (1/2)sin⁡(4φ)48 = 12√3 →
    area of green shaded area = 4(4π - 3√3); btw: EAB = α → sin⁡(α) = √7/14 → AE = 2√21 → AB = 9

    • @matthewmarston5149
      @matthewmarston5149 4 місяці тому +1

      Explain in Russian.

    • @matthewmarston5149
      @matthewmarston5149 4 місяці тому +1

      Explain how in Russian, not Greek Geek

    • @matthewmarston5149
      @matthewmarston5149 4 місяці тому +1

      No. I didn't get to these classes. I dropped out. But went to the United States Navy.

    • @PreMath
      @PreMath  4 місяці тому +2

      Thanks for sharing ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 4 місяці тому +1

    Calcolo r..(6+2rcos30)^2=(2r+√3)^2+((2r+√3)tg30)^2...risulta r=4√3...Agreen=πr^2/2-πr^2/6-(rcos30rsin30)=(1/3)πr^2-√3r^2/4=(π/3-√3/4)r^2=29,48..

    • @PreMath
      @PreMath  4 місяці тому

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 4 місяці тому +1

    Interesting question, thank you 🙂🙏
    Here my solution ▶
    By drawing the triangle in the given semicircle: ΔOCD
    [OC]= [DO]= r

    ∠CDO= ∠OCD = 30°

    ∠DOC= 120°
    By applying the cosine theorem for the triangle ΔOCD we can find [CD] :
    [CD]²= [DO]²+[OC]² - 2*[DO]*[OC]*cos(∠DOC)
    [DO)= r
    [OC]= r
    cos(120°)= -0,5
    [CD]²= r²+r² +2r²*(0,5)
    [CD]²= 2r²+r²
    [CD]= √3r

    [CA]= [CD]+[DA]
    [CA]= √3r + 6
    II) By considering the right triangle ΔBCA, we can write
    ∠BCA= 30°
    tan(30°)= 1/√3
    1/√3 = [AB]/[BC]
    [BC]= 2r+√3

    1/√3 = [AB]/(2r+√3)
    2r+√3 = √3 [AB]
    [AB]= √3(2r+√3)/3
    By applyig the Pythagorean theorem for the triangle ΔBCA, we can write:
    [AB]²+[BC]²= [CA]²
    [√3(2r+√3)/3]² + (2r+√3)²= (6+√3r)²
    (1/3)*(4r²+4√3r+3) + 4r²+4√3r+3 = 36+12√3r+3r²
    4r²/3 + 4√3r/3 + 1+ 4r²+4√3r+3 = 36+12√3r+3r²
    by multiplying both sides with 3 we get
    4r²+4√3r+3+12r²+12√3r+9 = 108+36√3r+9r²

    16r²- 9r²+16√3r -36√3r+12-108=0

    7r² - 20√3r - 96 = 0
    Δ= 20²*3 - 4*7*(-96)
    Δ= 3888
    3888 = 2⁴*3⁴*3
    √Δ = √2⁴*3⁴*3
    √Δ = 2²*3²√3
    √Δ = 36√3
    r₁= (20√3+36√3)/14
    r₁= 56√3/14
    r₁= 4√3
    r₂= (20√3 - 36√3)/14
    r₂= -16√3/14
    r₂= -8√3/7 < 0 ❌

    r= 4√3
    III) The area of the semicircle:
    Asc= πr²/2
    r= 4√3

    Asc= π*(4√3)²/2
    Asc= 24π
    By subtracting the tringle ΔOCD from this semicircle, plus the 60° segment of the circle, we can find the green area:
    Acircle segment = πr²*(60°)/360°
    Acircle segment = π*( 4√3)²*(1/6)
    Acircle segment = 8π
    A(ΔOCD)= 1/2 * [DO]*[OC]*sin(120°)
    A(ΔOCD)= 1/2*r²*sin(120°)
    A(ΔOCD)= 1/2*(4√3)²*√3/2
    A(ΔOCD)= 48√3/4
    A(ΔOCD)= 12√3
    Agreen= Asc - Acircle segment - A(ΔOCD)
    Agreen= 24π - 8π - 12√3
    Agreen= 16π - 12√3
    Agreen= 4(4π - 3√3)
    Agreen≈ 29,48 squre units

    • @PreMath
      @PreMath  4 місяці тому +1

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 4 місяці тому +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we observe that the triangle ABC is not only a right triangle, but it is also a 30°-60°-90° triangle. According to the theorem of Thales the triangle CDE is another right triangle and since ∠ACB=∠DCE=30°, this triangle is also a 30°-60°-90° triangle. Therefore with R being the radius of the semicircle we can conclude:
    DE:CD:CE = AB:BC:AC = 1:√3:2
    CE = 2*R
    DE = R
    CD = √3*R
    AC = AD + CD = 6 + √3*R
    AB = AC/2 = 3 + √3*R/2
    BC = BE + CE = √3 + 2*R
    AB:BC = 1:√3
    BC = √3*AB
    √3 + 2*R = √3*(3 + √3*R/2)
    √3 + 2*R = 3√3 + 3*R/2
    2√3 + 4*R = 6√3 + 3*R
    ⇒ R = 4√3
    The triangle OCD is an isosceles triangle (OC=OD=R). So we obtain:
    ∠ODC=∠OCD=∠ACB=30°
    ∠COD = 180° − ∠ODC − ∠OCD = 180° − 30° − 30° = 120°
    Now we are able to calculate the area of the green region:
    A(green)
    = A(circle sector OCD) − A(triangle OCD)
    = π*R²*(∠COD/360°) − (1/2)*OC*OD*sin(∠COD)
    = π*R²*(∠COD/360°) − (1/2)*R²*sin(∠COD)
    = π*(4√3)²*(120°/360°) − (1/2)*(4√3)²*sin(120°)
    = π*48*(1/3) − (1/2)*48*(√3/2)
    = 16π − 12√3
    ≈ 29.48
    Best regards from Germany

    • @PreMath
      @PreMath  4 місяці тому

      Excellent!😀
      Thanks for sharing ❤️

  • @MrPaulc222
    @MrPaulc222 4 місяці тому

    A couple of needlessly complicated dead ends before I finally got there.

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 4 місяці тому +1

    STEP-BY STEP RESOLUTION PROPOSAL :
    01) Departing from a Unit Circle, anyone can see that the Distance from the Center of the Circle to the Side of any Equilateral Triangle inscribed in a Unit Circle is half of the Radius.
    The Inner Angle in this case is equal to 120º.
    02) Now, draw 2 Orthogonal Lines from Point D, one parallel to AB e the other Parallel to BC. Find the Point F and Point G.
    03) The Right Triangle [ADG] have Sides:
    a) AG = 3
    b) DG = 3sqrt(3)
    c) AD = 6
    This can be verified by Trigonometry : Sine and Cosine of 60º.
    04) GD = BF = 3sqrt(3)
    05) OF = (EF - BE) = (3sqrt(3) - sqrt(3)) ; OF = 2sqrt(3)
    06) Radius (R) = 2 * 2sqrt(3) ; R = 4sqrt(3)
    07) Puting this data in a Segment Area Calculator with the following data :
    a) R = 4sqrt(3)
    b) Inner Angle = 120º
    c) Height of Segment = 2sqrt(3)
    d) Chord Length = 12
    e) It returns me the Area = 29,5 sq un
    Therefore,
    As far as my best knowledge can lead me, the Area of The Green Shaded Region is equal to 29,5 Square Units.

    • @PreMath
      @PreMath  4 місяці тому

      Excellent!😀
      Thanks for sharing ❤️

  • @cyruschang1904
    @cyruschang1904 4 місяці тому

    sin60° = (✓3)/2 = (✓3 + 2r)/(6 + x) = x/2r
    2(✓3 + 2r) = (6 + x)✓3
    2✓3 + 4r = 6✓3 + x✓3
    x = (2✓3 - 6✓3 + 4r)/✓3
    x = 4r/✓3 - 4
    x = r✓3
    4r/✓3 - 4 = r✓3
    r/✓3 = 4
    r = 4✓3, x = r✓3 = 12
    green area = (4✓3)(4✓3)π/3 - (6)(2✓3) = 16π - 12✓3

  • @matthewmarston5149
    @matthewmarston5149 4 місяці тому +1

    Can you please explain in Russian 😊

    • @PreMath
      @PreMath  4 місяці тому +2

      Good question.
      We are looking into translating into multiple languages...
      Thanks for the feedback ❤️