Divisibility Mathematical Induction Proof: 3 Divides 2^(2n) - 1

Поділитися
Вставка
  • Опубліковано 26 січ 2025

КОМЕНТАРІ • 29

  • @magnusdc1986
    @magnusdc1986 3 роки тому +4

    I'm a total math-illiterate trying to learn discrete mathematics. And these videos of yours makes so much more sense to me than a lot of the learning material that i try to dig into. Thank you for taking the time!

  • @TheAAZSD
    @TheAAZSD 5 років тому +6

    Watching your videos keeps the blade of proofs sharp. This channel isn't nearly as watched as it should be.

  • @mlfacts7973
    @mlfacts7973 Рік тому

    Great stuff! Absolutely enjoyed watching you proving it . When I first was taught PMI , I didn't like it and had a really hard time with it . But now , I have a much better understanding of it . Thank you very much the Math Sorcerer .

  • @firelordify
    @firelordify 9 місяців тому

    Thank you! I was struggling with PMI, and you made it click.

  • @nyankiku5863
    @nyankiku5863 2 роки тому

    Yooo this exact question was in my review session today and I'm 100% sure its going to be on my exam tomorrow. Thank you dear teacher, for you have shown me the way!

  • @valeara98
    @valeara98 4 роки тому +4

    Genial, locamente, con los videos explicativos en español sentí que no entendía nada :(
    Solamente habían ejemplos muy difíciles.
    Fuiste muy amable para explicar

    • @TheMathSorcerer
      @TheMathSorcerer  4 роки тому +2

      que buene que este video te ayudo! me alegro mucho:) gracias por dejar un mensaje!!
      :)

  • @pinklady7184
    @pinklady7184 5 років тому +1

    Few weeks ago, I had been doing exercises of arithmetic & geometric series. Now mathematical induction today. Great.

    • @TheMathSorcerer
      @TheMathSorcerer  5 років тому

      awesome! Yeah induction is great. I will be posting more induction stuff, mainly stuff I don't already have on my channel.

  • @mobilelegendsstudio4119
    @mobilelegendsstudio4119 3 роки тому

    God bless you teacher, your question came out in my online exam.. Thank you very much

  • @timhounsgaard8954
    @timhounsgaard8954 3 роки тому +1

    This helped me understand induction with divides thank you so much

  • @motiversity_1074
    @motiversity_1074 5 років тому +1

    idk how much I can thank you
    thank you so much

  • @Finne57
    @Finne57 3 роки тому

    Very cool induction proof that I understood for once! Great hair!

  • @tsshamoo2376
    @tsshamoo2376 5 років тому +2

    Proof w/o Induction
    Let q=2^n. Then 2^(2n)-1=(2^n-1)(2^n+1)=(q-1)(q+1)
    Now consider the numbers q-1, q, and q+1. These are 3 consecutive integers, so one of them must be a multiple of 3. But we know that number cant be q, since q=2^n. Therefore 3 divides either q-1 or q+1 which means 3 definitely divides (q-1)*(q+1) and were done

  • @quitecomplex6441
    @quitecomplex6441 5 років тому +3

    It’s a nice proof and a great use of proof by induction, but I don’t think induction is necessary to prove the result. A much simpler proof is that since x^2-1=(x-1)(x+1), 2^(2n)-1=(2^n+1)(2^n-1) Now upon division by 3, 2^n cannot have a remainder of 0 (for it has no prime factor 3) it must either have a remainder of 1 or 2. Suppose it has a remainder of 1. Then 2^n-1 is divisible by 3. Likewise, if it has a remainder of 2, then 2^n+1 is divisible by 3. Hence 2^(2n)-1 must be divisible by 3.

    • @DiegoMathemagician
      @DiegoMathemagician 5 років тому

      Nice proof!
      I also proved it but instead using modular arithmetic:
      1) Proving 3|2^(2n)-1 is equivalent to prove that 2^(2n)≡1 (mod 3)
      2) Observe that 2^(2n)=(2^2)^n=4^n
      3) a≡b (mod m) implies a^n≡b^n (mod m), therefore it follows from 4≡1 (mod 3) ---> 4^n≡1^n (mod 3) ---> 4^n≡1 (mod 3).
      By the way, I had an exam this semester where I needed to prove that 2^(2^n) always ends in 6 for natural n greater than 1. Is there a way to prove it without using strong induction?

    • @wiloux
      @wiloux 4 роки тому

      way simpler : 2^(2n) - 1 = (2^2)^n - 1 = 4^n - 1 = (4-1)Q(n) = 3Q(n) .

  • @sasiprakash9984
    @sasiprakash9984 4 роки тому +1

    Thank you so much man.You are really awesome.

  • @justinclark9258
    @justinclark9258 5 років тому +5

    Just a reminder that I ONLY like math because of my luck in having you as a teacher.

  • @rokiatoubsow6886
    @rokiatoubsow6886 2 роки тому

    Thanks ✨

  • @jaanuxlicious
    @jaanuxlicious 4 роки тому +1

    Well, now I know why it is like x+3x. I feel so dumb 😂. Thank you

  • @simons2006
    @simons2006 2 роки тому

    We can also do just modulo 3 and get: 4^k-1==1^k-1==0 (mod 3)

  • @georgettebeulah4427
    @georgettebeulah4427 5 років тому +1

    A multiple but it look so real I am a bit late i can understand so much from this sense

  • @sachinkachhava7672
    @sachinkachhava7672 Рік тому

    Plz prove 4^n=4mod6

  • @caleblott399
    @caleblott399 4 роки тому

    6:39 My Ex?! Oh, dear...