Linear Algebra Example: Span Questions

Поділитися
Вставка
  • Опубліковано 29 лис 2024

КОМЕНТАРІ • 100

  • @UnathiGX
    @UnathiGX 3 роки тому +19

    WOW!
    3 years Later!
    Appreciate your come back!

  • @elaine_chesoni
    @elaine_chesoni 2 роки тому +28

    This is amazing! Thank you so much for this video. I really appreciate how you emphasized the importance of stating what you're looking for (the preamble), what you're doing (the matrix you're writing and what it represents), and what the solution means (making sure you answer the question directly).
    Really really helpful. Thanks again!

  • @afailure805
    @afailure805 2 роки тому +10

    Just need a standard questions and a standard way to approach them and finally got you .
    Thank You .

  • @angelm7309
    @angelm7309 9 місяців тому +3

    holy after so much searching this is the only playlist i need for lin alg

  • @sankoktas420
    @sankoktas420 3 роки тому +19

    Dude is a legend

  • @scollyer.tuition
    @scollyer.tuition 8 місяців тому +3

    When I learnt linear algebra (a long time ago...) we used to write an augmented matrix with a vertical line separating the last column from the rest. This distinguishes it visually from the matrix of vectors which you use in the second type of span problem.

  • @yizhang1302
    @yizhang1302 3 роки тому +25

    I really appreciate your videos! You are a great great teacher! I hope you can have more videos.

  • @ravindrabind1504
    @ravindrabind1504 9 місяців тому +2

    My question is related to Example-2:
    "Is u4 in Span{u1, u2, u3} ?" : Is same way of asking same question?
    Solution:
    [[1, 0, 5/2, 0], [0,1,-1/2, 0], [0, 0, 0, 1]] may considered as following:
    x1 + 5/2*x3 = 0
    x2 - 1/2*x3 = 0
    0*x1 + 0*x2 + 0*x3 = 1==> 0 = 1, because System has no solution, So we may tell that System is inconsistent

  • @ObadaHakeem
    @ObadaHakeem 7 місяців тому +43

    It's 3:55 am 😢

  • @anujbhagat8151
    @anujbhagat8151 Рік тому +1

    nicely explained. do not delete this video. may come back to this vid, if if i am ever in doubt , in future. thanks!

  • @mosaif3590
    @mosaif3590 8 місяців тому +1

    Sir I am from India ,this vdo is too helpful for us .❤❤❤❤

  • @portillolopezjuanmanuel8079
    @portillolopezjuanmanuel8079 3 роки тому +9

    Awesome explanation! Although my ears hurt at that YES! in min 9:41 hahaha

  • @lucci3319
    @lucci3319 2 роки тому +7

    best ever span and its questions explanation. thankkk youuu so much sir! love from India! keep posting more lectures of David. c lay book. thanks againnnnn! :))))))

  • @shoremiayomikunoluwadaunsi1826

    Good morning y'all. Thanks a lot sir! I have Linear Algebra exams this afternoon and this has really helped! Particular to the questions you solved and other versions in which the question may be written.

  • @RaviPrakash-j4z
    @RaviPrakash-j4z 2 місяці тому +2

    In the 2nd example do we need to convert it into row echolon form or reduced row echolon form

  • @elbaavril9049
    @elbaavril9049 8 місяців тому

    Thank you for your explanation. I had doubts about span but now I understand it. Greetings from Peru

  • @williamnguyen7622
    @williamnguyen7622 Рік тому +1

    thank you sooooo much ... just even differentiating the 2 types of questions helps so much

  • @xoppa09
    @xoppa09 4 місяці тому +1

    Very useful video.
    When you say row reduce the matrix , is it sufficient to be in 'echelon form' or does it have to be in 'reduced echelon form' which is the unique reduced matrix. also books seem to vary on echelon form, some require the pivots to be scaled to 1 while others do not require it.

  • @himanshutiwari2601
    @himanshutiwari2601 Рік тому +3

    Great explanation dude❤

  • @Goal_baller
    @Goal_baller 8 місяців тому +2

    Perfect

  • @nadirbelkebir3
    @nadirbelkebir3 Рік тому +1

    Great video man ! Helped me a lot, wish me luck on my quiz !

  • @ESHANHU-p3d
    @ESHANHU-p3d 9 місяців тому +2

    Hi in which video do you talk about the Spanning column theory? You said it was in lecture video 9 but that video is labled as Matrix Equations and I did not find you mentioning the spanning column theory in that video. Thx!

    • @HamblinMath
      @HamblinMath  9 місяців тому +1

      webspace.ship.edu/jehamb/ela/lecture09.html

    • @HamblinMath
      @HamblinMath  9 місяців тому +1

      This part of the Lecture 9 video: ua-cam.com/video/OyqOfbeEhL0/v-deo.html

    • @ESHANHU-p3d
      @ESHANHU-p3d 9 місяців тому +1

      @@HamblinMath Thank you so much!

  • @sumitbhale3645
    @sumitbhale3645 Рік тому

    👍👍Sir explanation which clears all my doubts

  • @tpsspace7397
    @tpsspace7397 15 днів тому +1

    4 vectors cannot span R3

  • @TECHNICALBEAST2020
    @TECHNICALBEAST2020 Рік тому

    man really thank you lots of love from india

  • @araizhaisanbek5912
    @araizhaisanbek5912 10 місяців тому

    That’s really helped to understand! Thank you

  • @aan8474
    @aan8474 2 роки тому +2

    wonderfully explained!!

  • @Rayyan-mo8gv
    @Rayyan-mo8gv Рік тому

    Awesome video

  • @starliaghtsz8400
    @starliaghtsz8400 2 роки тому

    i think you can say that {u1, u2, ......., un} spans Rn as long as no vectors are multiples of each other, it works for R2 and R3 and logic suggests it should keep working right?

    • @HamblinMath
      @HamblinMath  2 роки тому +1

      Actually, it *doesn't* work in R3. Consider u1 = (1,0,0), u2 = (0,1,0), and u3 = (1,1,0). None of these vectors is a multiple of another, but they don't span R3.

    • @starliaghtsz8400
      @starliaghtsz8400 2 роки тому

      @@HamblinMath ooooh, yeah so that zero at the z coordinate means there is no pivot for the third row right?

    • @starliaghtsz8400
      @starliaghtsz8400 2 роки тому

      component*

    • @HamblinMath
      @HamblinMath  2 роки тому

      @@starliaghtsz8400 Just think about it like this: With the example I gave above, the span of {u1, u2, u3} can't be all of R3 because it doesn't contain vectors like (1, 2, 3) that have a non-zero third entry.

    • @starliaghtsz8400
      @starliaghtsz8400 2 роки тому

      @@HamblinMath yeah thats what i was trying to say, ty

  • @AngelZangata
    @AngelZangata 4 місяці тому

    You are such a good❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ teacher

  • @Hayat_kh202
    @Hayat_kh202 2 роки тому +1

    idk if i understood this right but when each row has a pivot it DOES span R^n/set of vectors but when a row is missing a pivot it doesn't span? or does it depend on what the question is asking

    • @HamblinMath
      @HamblinMath  2 роки тому +3

      You need to be careful when using the word "it." If you have some vectors in R^n and you want to know whether they span R^n, construct a matrix with those vectors as its columns. If that matrix has a pivot in every row, then those vectors span R^n. If that matrix does not have a pivot in every row, then those vectors do not span R^n.

  • @amar_1234_paul
    @amar_1234_paul Рік тому

    but in the scond question z the rank of augmented matrix and normal matrix is not same then how can we say that it spans?

  • @miksun_matematiikka
    @miksun_matematiikka 11 місяців тому

    Thank you, thank you and thank you one more time

  • @عالممختلف-ذ6ظ
    @عالممختلف-ذ6ظ 2 роки тому

    teacher can you tell me how to transforme from augmented to row reduced i know the steps but when i try i didnt the result like you get it

  • @kusumrao5894
    @kusumrao5894 2 роки тому +1

    its really amazing sir🥰🥰🥰

  • @mohammadk1
    @mohammadk1 2 роки тому

    Thank you habibi for helping me :)

  • @Joshua-rk7bl
    @Joshua-rk7bl 2 роки тому +1

    incredible

  • @mohammadsaad3037
    @mohammadsaad3037 Рік тому

    spanning column theorm? what are the rules for it other than the 2 shown in the video. I cant find it on google. All I keep seeing is the "Spanning Set Theorm"

    • @HamblinMath
      @HamblinMath  Рік тому

      The Spanning Columns Theorem (as I call it) states that the columns of an n x m matrix span R^n if and only if the matrix has a pivot in every row.

  • @mikesgarage18
    @mikesgarage18 2 роки тому

    An instance of linear independence in each dimension of R^3 implies a spanning set of vectors. Right?

    • @HamblinMath
      @HamblinMath  2 роки тому

      I'm not sure I understand your question. If you have a set of three linearly independent vectors in R^3, then that set must span R^3. The reason has to do with the idea of "dimension," which you can learn more about in this lecture: ua-cam.com/video/XIZxlNvAAjo/v-deo.html

  • @adamjahani4494
    @adamjahani4494 5 місяців тому

    At 4:21 im so confused. Can we use a coeffient matrix instead of an augment matrix? Becuz I have that equal sign or vertical line between my 2nd and 3rd column. I can’t seem to get the row reduced echelon form unless I do a coeffient matrix without that line. I’m stupid idk what I’m doing. I’m learning this for a summer class and we are going way too fast. Linear algebra in a month feels impossible

    • @HamblinMath
      @HamblinMath  5 місяців тому

      No, because the question here relates to the specific vector b. I recommend watching the "span" lecture video for addition explanations: ua-cam.com/video/qxRfVcJUihM/v-deo.htmlsi=OtHWMIhJjQ5BSh92

  • @capybara-k6g
    @capybara-k6g Рік тому

    for first example I thought it was in the span:
    2V1 + V2 = b
    b is a combination of V1 and V2, therefor b is in span{V1V2}

    • @HamblinMath
      @HamblinMath  Рік тому +1

      It's not true that 2v_1 + v_2 = b. Check *all* the entries carefully!

    • @capybara-k6g
      @capybara-k6g Рік тому

      @@HamblinMath ah gotcha, thanks!

  • @ahazizulhakimsumon1870
    @ahazizulhakimsumon1870 Рік тому

    Love your work man🤛

  • @miugirl24
    @miugirl24 11 місяців тому

    your videos are quite helpful but they would be even better if you took some extra time and went through row reducing the matrix in my opinion. thanks for ur effort !!!

    • @HamblinMath
      @HamblinMath  11 місяців тому

      You can find a full breakdown of the row-reduction process in this video: ua-cam.com/video/72ysuwtYA0c/v-deo.html

  • @stopconfusions5370
    @stopconfusions5370 2 місяці тому

    What’s a pivot

  • @donmoore26762671
    @donmoore26762671 3 роки тому

    Awesome instruction.

  • @micah2936
    @micah2936 Рік тому

    Should I watch this after lecture 9?

  • @mukhtarsuleman5291
    @mukhtarsuleman5291 Рік тому

    this helped a bunch, thanks alot

  • @flidoofficial1848
    @flidoofficial1848 Рік тому

    subscribed and here to stay

  • @irenebernardi3954
    @irenebernardi3954 Рік тому

    Hi! do we know why sometimes the lecturer row reduces to simple echelon form, whereas sometimes all the way to reduced echelon form?

    • @HamblinMath
      @HamblinMath  Рік тому

      Some questions can be answered with just echelon form. When we're doing row-reduction by hand, it's less work for us to get to echelon form rather than the reduced echelon form.

    • @irenebernardi3954
      @irenebernardi3954 Рік тому

      @@HamblinMath ok makes sense! Also thank you very much for all of your content, this is the first time algebra makes sense to me and that's invaluable

  • @theojunming
    @theojunming 2 роки тому

    So for the set of vectors to span R3 it has to has a rank of 3 ? Correct me if im wrong tysm. Also, since each row is linearly independent of each other , can i say that they form a basis for R3 ?

  • @chrisdalen1722
    @chrisdalen1722 Рік тому

    Why does a pivot in the last collum mean no solution?

    • @HamblinMath
      @HamblinMath  Рік тому

      ua-cam.com/video/kDbBTFvQgig/v-deo.html

  • @denuwanvlog
    @denuwanvlog 9 місяців тому

    Perfect! ❤️

  • @rajgurubhosale8680
    @rajgurubhosale8680 3 місяці тому

    thanksss mannn

  • @theojunming
    @theojunming 2 роки тому

    if i have multiple solution, can i still say that is b in span{v1.v2}?

    • @HamblinMath
      @HamblinMath  2 роки тому +1

      If the equation x1 v1 + x2 v2 = b has one or more solutions, then b is in Span{v1, v2}. If there are multiple solutions, this just means that b can be "built" out of v1 and v2 in multiple ways.

  • @mrdawne5293
    @mrdawne5293 8 місяців тому

    The 2nd example doesn't make sense cause if we look at the last row . It's like saying 0x1+0x2+0x3=1 ?

    • @HamblinMath
      @HamblinMath  8 місяців тому

      Incorrect. The matrix being row-reduced is not an augmented matrix. You may want to watch this video to better understand the Spanning Columns Theorem: ua-cam.com/video/OyqOfbeEhL0/v-deo.htmlsi=t9Vt4rLewr9r6xnJ

  • @vikasbansal4180
    @vikasbansal4180 3 роки тому

    Thank u sir for questions

  • @kodarkma7444
    @kodarkma7444 2 роки тому

    The last column has a pivot, what does it mean sir????

    • @HamblinMath
      @HamblinMath  2 роки тому

      ua-cam.com/video/eXL8m865QeM/v-deo.html

  • @drashysesodia512
    @drashysesodia512 2 роки тому

    Thanks a lot sir .

  • @lalisamanoban1126
    @lalisamanoban1126 2 роки тому

    Thank u sm sir

  • @Goal_baller
    @Goal_baller 8 місяців тому

    3yr later, I am here

  • @garza8211
    @garza8211 Рік тому

    Thanks :)

  • @mrdawne5293
    @mrdawne5293 8 місяців тому

    Doesn't the 1st example have infinitely many solutions ?

    • @ObadaHakeem
      @ObadaHakeem 7 місяців тому

      @@HamblinMath why do we say it's many solution and not unique? We got values for x1 and x 2 and x3 and x4 doesn't exist cuz we have 3 columns

    • @HamblinMath
      @HamblinMath  7 місяців тому

      @@ObadaHakeem My previous comment was in error. The equation x_1 v_1 + x_2 v_2 = b has no solutions because the augmented matrix has a pivot in the last column. There is no "x_3" or "x_4" in this question; the vectors have 4 *entries* but that doesn't mean there are four variables.

  • @makaka194
    @makaka194 Рік тому

    subscribed*

  • @sarahkimani8063
    @sarahkimani8063 3 роки тому

    whats a pivot