Finding Basis for Column Space, Row Space, and Null Space - Linear Algebra

Поділитися
Вставка
  • Опубліковано 2 лют 2025

КОМЕНТАРІ • 79

  • @tony-hz4gg
    @tony-hz4gg 10 місяців тому +35

    Bro you're a goat I never comment but u made everything so much easier to understand than the other tutors who just yap about definitions, but you explain the intuition. Love it def gonna start watching u more for linear.

    • @DrewWerbowski
      @DrewWerbowski  8 місяців тому +5

      Thank you so much for your comment. Are there any linear algebra topics you would like to see?

    • @Ahmed-yo7gb
      @Ahmed-yo7gb 8 місяців тому +2

      ​@@DrewWerbowski
      Determine if U is or not a subspace with justification.
      Finding eigenvectors and eigenvalues and diagonalization.
      Gram-Schmidt Orthogonalization Algorithm and computing a projection
      Finding a basis for a vector space
      Finding the matrix that describes the linear transformation (9.1).
      Least Squares Approximation
      Singular Value Decomposition
      Proof of an important Theorem

    • @DrewWerbowski
      @DrewWerbowski  8 місяців тому +2

      @@Ahmed-yo7gb thank you for the comprehensive list! Many of those topics I already have videos on my channel, but I will add some of the others to my list

  • @hagopderghazarian326
    @hagopderghazarian326 Рік тому +15

    I never comment on videos but you my friend just aced this chapter. Khan academy complicates it for no reasons. Great job

  • @rustomcadet3533
    @rustomcadet3533 Рік тому +17

    Thank you for this; you makes things much easier to understand.

  • @semkiz1133
    @semkiz1133 Рік тому +4

    omg i literally have my final tmrw and u just explained the concepts i've been dreading the most in the most understandable way ever omfg ur the goat

    • @DrewWerbowski
      @DrewWerbowski  Рік тому +1

      Thank you! Hope your final went well!

    • @art.sthetic1615
      @art.sthetic1615 Місяць тому

      i also have my final tomorrow 😂😂

    • @semkiz1133
      @semkiz1133 Місяць тому

      @@art.sthetic1615 omgg how did it go!

    • @thethunderrr07
      @thethunderrr07 Місяць тому

      @@semkiz1133 answer btuh

    • @weewuwuu
      @weewuwuu Місяць тому

      @@semkiz1133 HOW DID YOUR FINAL GO

  • @pharaohscurse
    @pharaohscurse Рік тому +4

    Thank you so much. Finally understood the concept perfectly

  • @AdrenalStorm
    @AdrenalStorm Рік тому +4

    OMG THANK YOU SO MUCH. You are a life saver. I was having so much trouble with a question on MyOpenMath and now I understand 😭

  • @TumuhairwePeace-we6zd
    @TumuhairwePeace-we6zd Рік тому +2

    Thanks for good explanation,may God bless you abandantly

  • @FarheenQureshi-ei9jv
    @FarheenQureshi-ei9jv 8 місяців тому

    best explanation of topic .... finally i understood the topic ... it is simple but our teacher make it very hard.

  • @SyedNazeeb-s7w
    @SyedNazeeb-s7w 2 місяці тому

    I haven't seen such an easiest way of solving maths problems.It seems like u r playing on ur computer. By the way Brother ur vocal delivery is truly captivating

  • @volken54
    @volken54 5 місяців тому

    Great! Thanks for this simple and intelligent explanation!

  • @alexanderstrauss6282
    @alexanderstrauss6282 3 місяці тому

    needed this, thanks for creating this. :)

  • @BHAWISHGOYAT-p4t
    @BHAWISHGOYAT-p4t 3 місяці тому +1

    you made it much easier and i can say you made it more easy than the professors of india's highest ranked iit

  • @moshiurrahman9677
    @moshiurrahman9677 2 роки тому +10

    Excellent presentation. Thanks.
    You presented it in consideration of a homogenous system. Could you please add some explanation of this topics in a non-homogenous system? You are a great teacher!

  • @maxpercer7119
    @maxpercer7119 9 місяців тому

    interesting you say that applying a linear transformation is 'shifting space'. So that is one way to think about it, as a mapping between two spaces , the departure space and the arrival space, or as transformation of the departure space.
    A linear transformation is equivalent to matrix multiplication, and for the null space we are looking for solutions to A*x = 0 , where x is an n x 1 matrix of "solutions" and A is a given m x n matrix. When x varies you have a map from R^n -> R^m , defined by x -> A * x .

  • @cerberuss8133
    @cerberuss8133 11 місяців тому

    thank you! my endterm is tomorrow, u helped a lot!

  • @titaniumx5471
    @titaniumx5471 10 місяців тому

    explained it better than my prof and my textbook combined. appreciate it man thank you

  • @ElifArslan-l9g
    @ElifArslan-l9g 2 роки тому +2

    thank you so much! btw your voice is super cool

  • @matthiasd2023
    @matthiasd2023 Рік тому +1

    you are a legend thank you so much

  • @bunkeredpond7249
    @bunkeredpond7249 2 місяці тому

    your the goat bro

  • @nattavich2780
    @nattavich2780 2 роки тому +2

    Thank you for teaching. It helps me to solve my homework. And if you don’t mind,please you will suggest the book of Linear Algebra.

  • @maxpercer7119
    @maxpercer7119 9 місяців тому

    11:22 I think there is a mistake, it should be the span of {v1, v2, v3, v3} = span {v1, v2} , not
    span {v1, v2, v3 } = span v1, v2, since there are four vectors we started with in Col(A).

    • @syedabubaker1389
      @syedabubaker1389 9 місяців тому

      It was an example {v1, v2, v3, v3} = span {v1, v2} stands correct due to {v1, v2, v3 } = span {v1, v2} being correct

  • @jojo_099-4
    @jojo_099-4 2 місяці тому

    Can you explain how can I know if the vectors are free or not? how can i know that they're not equal to 0 and they're linearly dependent? it's as what is said in 10:42
    I really can't figure it out, i still have difficulties😭😭

  • @promilaize
    @promilaize Рік тому

    Thanks for making it understand.

  • @abdelazizamr33
    @abdelazizamr33 Рік тому

    great video you deserve more likes and subscribes

  • @cornmasterliao7080
    @cornmasterliao7080 Рік тому +2

    so for column space I should use the corresponding column vectors in the original matrix. for row space I should use the row vectors in the RREF matrix?

  • @AsandeGumede-yx9vc
    @AsandeGumede-yx9vc 8 місяців тому

    youre so good man!

  • @henrytzuo8517
    @henrytzuo8517 10 місяців тому

    THANK YOU!!😀😀😀

  • @ColeWagner-l5j
    @ColeWagner-l5j Рік тому +1

    Hey thought the video was great but I think your definition on independence may be off. A matrix is independent if the subsets don’t contain other subset variables. Your first problem you said was independent was actually dependent even though it spanned

    • @jojo_099-4
      @jojo_099-4 2 місяці тому

      wait wasn't it independent? since the number of columns after the REF are more than the rank of the matrix?

  • @SameerSiddiqui-c6e
    @SameerSiddiqui-c6e Місяць тому

    my goat

  • @AkashSingh-vm8rd
    @AkashSingh-vm8rd 2 роки тому +1

    Thank you, buddy

  • @mirmubasher9597
    @mirmubasher9597 4 роки тому +2

    will the dimensions of basis of col(A) and row(A) always be the same?
    Does dimensions of basis of null(A) hold any significance with col(A) and row(A)?
    Thank you!
    you're blessed.

    • @natedominion5432
      @natedominion5432 2 роки тому +6

      Dimensions of Row(A)=Col(A) and Dimensions of Row(A) + null(A) = # of columns

  • @sevdedundar2334
    @sevdedundar2334 7 місяців тому

    thank you so much.....

  • @samueldarenskiy6893
    @samueldarenskiy6893 Рік тому +12

    Wouldn't the column space be the set of all column vectors, so literally every column is in the span. Whereby the basis is all the literally independent columns

    • @prasanjeetnayak8253
      @prasanjeetnayak8253 Рік тому +1

      Yes

    • @anirbandhar1
      @anirbandhar1 Рік тому +3

      Column space is the linear span of all independent columns of the matrix. So sure, it contains all the columns in the matrix, however its not limited to it.

  • @sohamnandi5457
    @sohamnandi5457 Рік тому

    If I perform row operations on a matrix, does it affect its column space? I am asking this because I used to perform row operations on the transposed matrix so that they are basically column operations.

    • @theultimate2345
      @theultimate2345 6 місяців тому

      On a matrix after application of row operation the row space stays the same while column space changes , and for application of row operation on its transpose keeps it's column space same but changes row space

    • @sohamnandi5457
      @sohamnandi5457 6 місяців тому

      @@theultimate2345 got it, thanks a lot!!

  • @sachininirmani4791
    @sachininirmani4791 Рік тому

    thank you!

  • @LenaGreen3
    @LenaGreen3 2 місяці тому

    Good video

  • @Kage1128
    @Kage1128 Рік тому

    would be cool if you shared the onenote document so that we could save it for notes :)

    • @DrewWerbowski
      @DrewWerbowski  Рік тому +7

      You'll learn more efficiently if you listen, understand, then write notes in your own way :) Good luck!

  • @briannguyen5057
    @briannguyen5057 2 роки тому +1

    thanks!

  • @aminamehboob4068
    @aminamehboob4068 2 роки тому

    Thank you so much sir

  • @viral724pathak
    @viral724pathak 3 роки тому

    please suggest any book from where i can get all these things. thnx

  • @daphneeroy6623
    @daphneeroy6623 Рік тому

    Can I write the basis row with the original matrix like we did with the columns ? Thanks

  • @davlatbekkobiljonov911
    @davlatbekkobiljonov911 Рік тому

    thanks

  • @Triadii
    @Triadii 4 місяці тому

    but the question is asking for a column space of a polynomial. There isn't even a matrix given in the question.

  • @vortexx3028
    @vortexx3028 Місяць тому +1

    GeForce Game Ready Driver is AVAILABLE 🗣🗣🗣🗣‼‼‼‼‼‼

  • @abdur._.sharif
    @abdur._.sharif 3 місяці тому

    i luv u

  • @advikace8847
    @advikace8847 2 роки тому

    Video was lil bit helpful

  • @abdur._.sharif
    @abdur._.sharif 3 місяці тому +1

    plz replace my linear teacher 🙏🙏🙏

    • @garytan4423
      @garytan4423 13 днів тому

      linear teacher 😂😂😂

  • @AidanMarley-jg9iv
    @AidanMarley-jg9iv 2 місяці тому

    you are jesus

  • @ВикторияИльина-ю4з

    what is your instagram..

  • @kaustubhlande5568
    @kaustubhlande5568 Рік тому

    Can I write the basis row with the original matrix like we did with the columns ? Thanks

    • @armisol00
      @armisol00 Рік тому

      I have the same question and exam in 5days

    • @kushaal1607
      @kushaal1607 10 місяців тому

      no you can't, i don't know why, but i'm sure you can't write the basis row with the original matrix like we did with the columns

    • @rubengabeaditya598
      @rubengabeaditya598 10 місяців тому

      @@kushaal1607 how about making the matrices to the transpose form and then you take the original vector as row space after finding the rref. Is it still wrong?

    • @theultimate2345
      @theultimate2345 6 місяців тому

      ​@@kushaal1607 you can write it that way thought

    • @DirkdeZwijger
      @DirkdeZwijger 3 місяці тому

      @@kushaal1607 in the video (14:39) he says that row(A) of the original matrix A is equal to the row(A) of the RREF form, so you can use both. Only for columns it doesn't work, as you might end up the standard basis vectors, which is not per definition the same as the basis of col(A) of the original matrix A

  • @seacheuk5665
    @seacheuk5665 2 роки тому

    thanks!