Laplace transform of sin(bt), using definition and integration by parts

Поділитися
Вставка
  • Опубліковано 16 гру 2024

КОМЕНТАРІ • 44

  • @bartomiejwitek4510
    @bartomiejwitek4510 6 років тому +25

    If only it's been taught like that at the UNI... great tutorial!

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      : )

    • @TecknoVicking
      @TecknoVicking 4 роки тому +1

      It's taught like that. But when it's taught, you still don't understand because it's new.

    • @wei270
      @wei270 2 роки тому

      they don't have time, they have to go thought lapse transformation in 45 min do you think they have time to sit down and show you how it is done on sin(at) lol

  • @FredDeliege
    @FredDeliege Рік тому

    I like very much the way you organize your calculations in order not to make mistakes, like sign mistakes, and also writing things similar close together in order to keep eyes in the same region of the board. Great video thanks a lot

  • @DakotaHarms
    @DakotaHarms 7 років тому +9

    Never seen the D I method before and it’s awesome

    • @TecknoVicking
      @TecknoVicking 4 роки тому

      It's pretty basic.

    • @SeaLover150
      @SeaLover150 4 роки тому

      in my country we call it tabulation method

  • @lagrangiankid378
    @lagrangiankid378 5 років тому +28

    Steve, you are the b*e^-st.

  • @mokouf3
    @mokouf3 3 роки тому +1

    For this kind of integral, I use complex number instead of DI, then do the usual take limit stuff!

  • @MrCigarro50
    @MrCigarro50 7 років тому

    Great video, Highly recommended!!!!!!!!!! Thanks Professor.

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 3 роки тому

    Thanks for nice presentation. Black pen Red pen Blue pen . DrRahul Rohtak Haryana India

  • @kokodoreJr
    @kokodoreJr 3 роки тому

    FOR REAL THANK YOU SOO MUCHH

  • @marcellacella8293
    @marcellacella8293 3 роки тому

    Life savior

  • @gabrielorville5334
    @gabrielorville5334 3 роки тому

    You just saved my ass brother. May you break NASDAQ with Sprite stocks.

  • @steelersfan036
    @steelersfan036 5 років тому

    amazing and clear

  • @JohnSmith-iu3fc
    @JohnSmith-iu3fc 5 років тому

    Thank you, sir, thank you.

  • @ozzyfromspace
    @ozzyfromspace 4 роки тому +1

    Nice video! One minor point: Re(s)>0, not s>0. s is a complex number so “greater than” doesn’t really make sense in this context.
    Question: Does s>0 affect our solution in any way once we go back to t space?

  • @isaacowacgiu6447
    @isaacowacgiu6447 Рік тому

    Thanks

  • @Taha_ranjbar
    @Taha_ranjbar 3 роки тому

    Thanks bro...

  • @RahibulAzizAnam2002
    @RahibulAzizAnam2002 Місяць тому

    BESTTTTTT

  • @joejavacavalier2001
    @joejavacavalier2001 3 роки тому

    I can't imagine trying to do this w/o the D-I method.

  • @simoneiervasi6174
    @simoneiervasi6174 4 роки тому

    Sorry, i haven't understood why, at 13:23, we need that the first part goes to zero as N goes to infinity :)

    • @haligali4360
      @haligali4360 4 роки тому +2

      to simplify the expression.
      Because of cos(x) and sin(x) with x going to infinity do not have limits. as far as I remember, L transform transforms functions from 'xy' plane to 's' plane. So, we need s>0 which means that for negative 's' function does not exist or not identified. In simple words, assuming that the first part equals zero provides the solution.

    • @TecknoVicking
      @TecknoVicking 4 роки тому +1

      Because exp(-sN) goes to 0 as N goes to infinity IF s is positive.
      And exp is "stronger" than any other classic function.

  • @CarlosFlores-ty7dy
    @CarlosFlores-ty7dy 4 роки тому +1

    Steve!! Can I do the DI method with definite integrals? I have been having problems with integration by parts in definite integrals :( Could you make a video for us please!! Love your work!

    • @adude6568
      @adude6568 3 роки тому +2

      It's safer to take the indefinite integral first and then do the boundary difference. If you keep it definite, you have to keep track of the terms that aren't inside an integral and put the "evaluated from a to b" sign so you won't forget. In short, yes you can, as it doesn't change anything, but it's better not to

  • @insubordinateandchurlish_
    @insubordinateandchurlish_ 4 роки тому

    Savior.

  • @ajeth23
    @ajeth23 5 років тому

    Nice video. When can I use this method?

  • @michaelroditis1952
    @michaelroditis1952 5 років тому

    Wouldn't it be more correct to say b isn't 0 and S is greater or equal to 0?

  • @Mrtyson-em3fe
    @Mrtyson-em3fe Рік тому

    Hello sir I love math too much should I continuously do it or find a job??

  • @andrewkelly3910
    @andrewkelly3910 7 років тому

    I know you havent been doing integrals lately, but can you (not in a video, just at all) find the integral of
    1/((1-x^3)^1/2)? Apparently the only way is elliptical geometry or something!

  • @melaninmeetsanime2410
    @melaninmeetsanime2410 2 роки тому

    smooooth.

  • @도미요
    @도미요 Рік тому

    Where is Laplace cosbt?? ㅜㅜ

  • @raman6960
    @raman6960 4 місяці тому

    🐐

  • @jemcel0397
    @jemcel0397 7 років тому +1

    Hi! What book you're using? And nice to know you're handling DE classes too :)

    • @blackpenredpen
      @blackpenredpen  7 років тому

      This one
      www.amazon.com/Fundamentals-Differential-Equations-Featured-Titles/dp/0321747739

  • @JanLaalaa
    @JanLaalaa 4 роки тому

    Greattt

  • @billofrights5064
    @billofrights5064 7 років тому +1

    Seems like too many moving parts, therefore, much of opportunity for error. Albeit you moved right along, you took no such opportunity.

  • @brian554xx
    @brian554xx 7 років тому

    Is there any reason we can't skip the improper integral at the beginning, and just start with the limit as N goes to infinity?

    • @Koisheep
      @Koisheep 6 років тому +1

      Well, the improper integral is the definition of Laplace transform...

  • @John-hl8vm
    @John-hl8vm 3 роки тому

    I thought look-up tables are the only way to find L{sin(bt)} 🥵🥵🥵

  • @thomasjefferson6225
    @thomasjefferson6225 Рік тому

    Bruh i did the addition on the integral wrong and couldnt understand why.
    I ended up using complex sin. A bit easier integral haha