Dot and Cross Products (old)

Поділитися
Вставка
  • Опубліковано 1 гру 2024

КОМЕНТАРІ • 189

  • @jg394
    @jg394  6 років тому +67

    This is a really old video, but it is by far my most popular. I'm rebooting my channel, so please subscribe and check out my newer videos. Thanks!

    • @surbhimaheshwari7494
      @surbhimaheshwari7494 5 років тому +4

      Old is gold :)

    • @ritabrata.sarkar.
      @ritabrata.sarkar. 5 років тому

      Nice video Sir

    • @guitarttimman
      @guitarttimman 4 роки тому

      I, uh, are you a hippie? I, uh, don't know how to say this and be polite at the same time, but uh. Never mind. 🙃

  • @ShricharanArumugam95
    @ShricharanArumugam95 3 роки тому +19

    I'm watching this in 2021, this entire series has been a game changer for me in competitive exams... I dont know if you'll read this but Thank you OP for all the patience.

  • @hazelmaeantimor4613
    @hazelmaeantimor4613 3 роки тому +5

    My prof had a 3 hr lecture on this topic and I still didnt get it. Now, I'm here for almost 9 minutes and i learned everything. Thanks, old but gold.

  • @ritabrata.sarkar.
    @ritabrata.sarkar. 5 років тому +32

    I am watching this video on 16 September in 2019. It is very old but still very helpful 🙏❤️❤️🙏. Love from India

    • @jg394
      @jg394  5 років тому +8

      I wish people would watch my newer videos. I am embarrassed with how poorly this was done.

    • @cement2755
      @cement2755 4 роки тому

      @@jg394 no sir this made me understand and aced my test and got like 85%
      helped me a lot

  • @dont_touch_my_cupcake2938
    @dont_touch_my_cupcake2938 4 роки тому +1

    This videos 8 years old and still helped me so so much. Especially now , when we have online classes, I barely understand what the teachers saying. But this helped me understand 3 to 4 classes' worth of syllabus. Thank you so so much sir !!!

  • @davidpottinger4552
    @davidpottinger4552 9 років тому +14

    Wow!
    I don't think I've ever heard that comparison before and it makes so much sense!

  • @Pooja.siwach
    @Pooja.siwach 3 роки тому +1

    This is what i was searching for 1 month

  • @patrickmayer9218
    @patrickmayer9218 Рік тому

    This was like 20th on search results and yet was better than the top 19 combined. Thanks so much, man!

  • @h.cazador
    @h.cazador 9 років тому +5

    I like how you planned out your lesson visually before giving it. I also like how you break things down and go back a few steps to clarify. Thanks, this helped a lot.

  • @gamalieldas9695
    @gamalieldas9695 8 років тому +3

    Hurray !!! My doubts are cleared... Thanks a lot !!!!

  • @AliHSyed
    @AliHSyed 8 років тому +23

    Exam on monday,, LETS DO THIS! ahaha

  • @66250597n
    @66250597n 9 років тому +4

    Great job dude , 8 min worth it to watch . Not waste of time at least in your provided video

    • @jg394
      @jg394  9 років тому +1

      +Navid Rasouli Thanks!

  • @DarknessIsThePath
    @DarknessIsThePath 8 років тому +1

    Probably the best explanation about this I've ever seen or read.

  • @kelvinmalitao
    @kelvinmalitao 8 років тому +36

    *perpendicular

  • @ernstboyd8745
    @ernstboyd8745 5 років тому +1

    Instead of talking about sin and cos (which scares many and the vector opperators
    can be introduced BEFORE trig)
    If we just say B is a unit vector then A.B is the length of the A vector in the direction of B
    and A x B is the length of A cross wise for the direction of B
    I think that is easier

    • @jg394
      @jg394  5 років тому +1

      It's true that it's probably easier, but sin and cos are not that scary, and if you're going to learn electrodynamics, you need to get comfortable with them. There are several places in EM where it doesn't make much sense to think "in the direction of" or "in the direction perpendicular to". It makes much more sense to just bite the bullet and think of sin and cos and waves.

  • @fitofight8540
    @fitofight8540 8 років тому

    By convenience right hand rule is use to denote the direction of the resulting vector from cross product.

  • @NeverFinishAnythi
    @NeverFinishAnythi 8 років тому +5

    Had right hand rule explained so many times, never understood it till now. thx

  • @venugopalsriperumbudur4557
    @venugopalsriperumbudur4557 3 роки тому

    Bro ,this video helped me out to answer the fastest in my class..... Thank you bro.

  • @fitofight8540
    @fitofight8540 8 років тому +3

    Cross product is an area of a parallelogram.

  • @priyankachowdary904
    @priyankachowdary904 5 років тому +1

    How to know if we’re supposed to use dot product or cross product?

  • @natkehoe2234
    @natkehoe2234 5 років тому +1

    my god, this helped me so much to understand what the scalar product was. thanks so much!

    • @jg394
      @jg394  5 років тому

      I want to redo this in the near future.

    • @jg394
      @jg394  5 років тому

      @@Tiffany-wb4ln I think this week will be THE WEEK. I'm worried as this one video has been responsible for 1/3 of my ad revenue from UA-cam.

    • @jg394
      @jg394  5 років тому +1

      @@Tiffany-wb4ln I'm going to keep this one up and link to the new one via a card. Here's the new one: ua-cam.com/video/rL2RnbZp5TM/v-deo.html
      Join me on Discord: discord.gg/TGK47Pf

  • @Jeffrey_Wong
    @Jeffrey_Wong 8 років тому +2

    Thank you for devoting some of your time to educate us!

  • @johndoe-bq1xt
    @johndoe-bq1xt Рік тому

    WHAT A GREAT COMPARISON! THANK YOU! YOU'RE A GENIUS! YOU SHOULD BE A TEACHER !!!

  • @ernstboyd8745
    @ernstboyd8745 5 років тому

    I think it is easier to first introduce the dot and cross product in 2 dimensions
    then you can just say the cross product also produces a number Ax By - Ay Bx
    Later when you do it in 3 dimensions you can tell them the cross product is
    actually a vector strait out of the page.

    • @jg394
      @jg394  5 років тому

      We don't got time for that, unfortunately. It may make sense mathematically but nothing in EM will make sense in 2 dimensions.

  • @PiKaChU-sb8qn
    @PiKaChU-sb8qn 3 роки тому +1

    best explanation ever
    👍

  • @dpa71999
    @dpa71999 8 років тому +2

    +jg394 sir i have a doubt , I understand that in cross product we have a sin theta in the formula , but when we have two parallel vectors we can have a vector which is perpendicular to both .. but why does the cross product of two parallel vectors gives us nothing even though we can a vector which is perpendicular to both,

    • @jg394
      @jg394  8 років тому +1

      There are an infinite number of vectors perpendicular to two parallel vectors.

  • @ronalda6658
    @ronalda6658 8 років тому +18

    Cool stuff, but one small thing. It's not pi degrees, it's pi radians, and they're two different things. Pi degrees is 3.14 degrees, pi radians is 180 degrees. Different measurements.

    • @jg394
      @jg394  8 років тому +7

      +Roald Amundsen Very good point.

    • @rohitbhosle6521
      @rohitbhosle6521 8 років тому

      Ronald A going to find this comment!

  • @HJ-ue8xo
    @HJ-ue8xo 7 років тому +2

    thank you🙏🙏

  • @Persian771
    @Persian771 8 років тому +2

    thanks for explanation but it would be better if you show in detail by drawing them and what really means to multiply vectors.

  • @Janedoe_1809
    @Janedoe_1809 4 роки тому +1

    Is there any new video on this?? This is fab and lovely.❤❤😘😘

  • @jg394
    @jg394  11 років тому

    That's just the way it is. It's a definition, and from the definition flows all the properties.
    Think of it this way: We have these things in math that are done that way. It turns out that there are many things that do things in a similar way. So mathematicians said, "Let's give this method a name" and hence, the dot and cross products. Now, instead of describing the process each time we need to do it, we just say "dot product" or "cross product" and everyone understands what it means.

  • @pinklady7184
    @pinklady7184 4 роки тому

    Very helpful. Thank you for making this tutorial. I hope you will make more videos and I am looking forward to them. I just subscribed.

  • @ShailendraYadav-ox1ev
    @ShailendraYadav-ox1ev 6 років тому +1

    Please show how to do product in cross and dot

    • @jg394
      @jg394  5 років тому

      I already did. Yes, you can do the component-wise dot or cross product, but I find that it's only useful for solving problems and does not help you understand what they are and how they actually work.

  • @wahabbalenezi3399
    @wahabbalenezi3399 8 років тому +3

    Thanks for helping me you saved me ❤

  • @kaurwambaeva3474
    @kaurwambaeva3474 6 років тому

    i like it, you guys kill, now i understand them better

  • @TheJoshuatuqvq
    @TheJoshuatuqvq 10 років тому +10

    2:42 - 2:51....0, π/2, π RADIANS not degrees, that would have confused the fuck out of me if I saw it a year ago.

    • @KaranKumar-ks4vy
      @KaranKumar-ks4vy 9 років тому +4

      Correct!

    • @jg394
      @jg394  9 років тому +4

      +Josh Javaherian Sorry, after a while you just stop using degrees and always use radians. Degrees and calculus do not mix.

  • @timmy18135
    @timmy18135 4 роки тому

    Can you explain why we can't have a cross product of 4d vectors

  • @natashasoomro5788
    @natashasoomro5788 4 роки тому +1

    How many of ya'll up at 2 am tryna understand

  • @daviddabeegukabassima8232
    @daviddabeegukabassima8232 Рік тому

    Good Presentations! God bless you! Keep the good work!

  • @tasneemqaisi7340
    @tasneemqaisi7340 7 років тому

    Thank you very much!! Wish I had a teacher like you

  • @zuhairalsaffar7001
    @zuhairalsaffar7001 4 роки тому

    Sir you did your best l like your way of teaching thanks

  • @Rovshenification
    @Rovshenification 9 років тому +3

    thanks for it :) I'm sure I will never confuse :D

  • @khangrammartips2025
    @khangrammartips2025 4 роки тому

    Dear sir i have a one question plz u tell me why we use cos with dot product and sin with cross product

  • @instaminox
    @instaminox 9 років тому +3

    great lecture

    • @jg394
      @jg394  9 років тому

      +ihonestytruthful Thanks

  • @arunkumarsennimalai417
    @arunkumarsennimalai417 4 роки тому

    Thanks man really cleared up a lot of things

  • @dr4ncer
    @dr4ncer 3 роки тому

    the best! thank you saved my life :)

  • @TheS4akella
    @TheS4akella 6 років тому +1

    Clear teaching

  • @christeenathomas2019
    @christeenathomas2019 5 років тому +3

    Thq sir

  • @ishanbansal3990
    @ishanbansal3990 6 років тому +2

    Nice writing

  • @ghazanfarabbas202
    @ghazanfarabbas202 7 років тому +2

    best explanation😊

  • @sivaraj3994
    @sivaraj3994 6 років тому +1

    U cleared my doubt thanks

  • @pepsqueack1729
    @pepsqueack1729 2 роки тому

    Thank you very much from Ukrainian student in Poland.

  • @rameshrawal6306
    @rameshrawal6306 6 років тому

    My actual question is how does the cross product of 2 vectors give vector and dot product of two vectors give scalar????i want justification plz...can i get my answer...

  • @hayahaya3876
    @hayahaya3876 8 років тому

    Thank you

  • @secretofallthings6962
    @secretofallthings6962 5 років тому +1

    Thanks for the answer

  • @Kashif_Javaid
    @Kashif_Javaid 11 років тому

    Nice comparison!

  • @VivekKumar-ew2vo
    @VivekKumar-ew2vo 7 років тому +2

    How is a vector cross a vector equal to 0??

    • @jg394
      @jg394  5 років тому

      When they're parallel or antiparallel.

  • @instaminox
    @instaminox 9 років тому +1

    Nice break down! It clicks very well ... Thanks for your time and effort!

  • @louisecuento
    @louisecuento 10 років тому +2

    Nice it really helps sir! :)

  • @AliHussain-sn8qi
    @AliHussain-sn8qi 7 років тому

    why in dot product there is cosine but not in cross product and vice versa explain please....

  • @ashw730
    @ashw730 7 років тому +1

    should write as |a| |b| as they are magnitudes right

    • @jg394
      @jg394  7 років тому +1

      There's different notation systems. In Physics, we use a, b to represent magnitudes. The vectors are either in bold (in textbooks) or with an arrow. The basis vectors have a caret on their head, which we call "hat".

  • @niveditahule757
    @niveditahule757 7 років тому

    big thanks helped a lot in my studies ty ty ty ty ty!!!!😊😊👏👍👌👏

  • @darrianalisantoso6083
    @darrianalisantoso6083 9 років тому +1

    "squezee" 7:54 , Great lecture btw thanks ^_^

  • @Penndennis
    @Penndennis 7 років тому

    Great job! Thanks.

  • @sayedbasha200
    @sayedbasha200 6 років тому

    Correct explanations dude

  • @psahare7977
    @psahare7977 5 років тому +1

    very good video ...

  • @Thor-oq4pq
    @Thor-oq4pq 6 років тому +2

    What does n^ represent in ab sin teta n^ ??

    • @jg394
      @jg394  6 років тому +4

      The unit vector in the direction of n.

    • @Thor-oq4pq
      @Thor-oq4pq 6 років тому +1

      Thanks for letting me know 😊

    • @sagarurs2554
      @sagarurs2554 6 років тому +2

      Mohammed Khalandar n^ represents unit vector,which is perpendicular,to a×b vector

  • @krishnareddy-ry6kc
    @krishnareddy-ry6kc 7 років тому +1

    Radians but not degrees.22/7,180

  • @pardeeprana9056
    @pardeeprana9056 5 років тому +3

    7:55- 8:00 okk forget it😅😅

  • @felixomondi5821
    @felixomondi5821 6 років тому

    this is realy wonderful and amazing.

  • @V.kumar007
    @V.kumar007 5 років тому +1

    I'm from India.
    Nice video

    • @jg394
      @jg394  5 років тому

      Hello India! I get a lot of viewers from India. I guess you guys care about math and physics over there.

    • @rohitadigam2466
      @rohitadigam2466 5 років тому

      Only during exams😂😂

  • @ヴァイオレット-o3k
    @ヴァイオレット-o3k 10 років тому +1

    thank you, sir!

  • @samuelmiricleromalo
    @samuelmiricleromalo 8 років тому +2

    *Perpendicular

  • @MegaBdboy
    @MegaBdboy 8 років тому +1

    Is dot product same as inner product ?

    • @jg394
      @jg394  7 років тому

      Yes, but we use "dot product" more often in Physics. "Inner product" suggests linear algebra, which is nice but not what we are thinking of.

    • @MegaBdboy
      @MegaBdboy 7 років тому +1

      jg394 I was learning for a linear algebra exam i wanted to make sure it's the same.

  • @ashrafbazan5029
    @ashrafbazan5029 11 років тому

    Why in the dot product it is Cosine theta (maximized when parallel) while in the cross product it's Sine (maximized when perpendicular) ?
    Thanks

  • @habeebakhan3871
    @habeebakhan3871 6 років тому +1

    if in any question we have to find product then how we 'll know that there we use scalar or cross products

    • @jg394
      @jg394  6 років тому

      You'll have to memorize which product you need. If you can't remember, the dot product yields a scalar, while the vector product gives a vector perpendicular to the factors. 99% of the time in physics it's the dot product you need, except for rotational kinematics and magnetics.

    • @habeebakhan3871
      @habeebakhan3871 6 років тому

      +Real Physics where we use dot product nd where we use cross product

  • @we-are-electric1445
    @we-are-electric1445 2 роки тому

    If we have ab sine theta where theta is 90 degrees then surely the two vectors are perpendicular ? It's rather confusing

    • @jonathangardner4842
      @jonathangardner4842 2 роки тому

      sine of 0 is 0. Sine of 90 degrees is 1. Sine is maximized at 1 when the two vectors are perpendicular, and minimized at 0 when they are parallel.

    • @we-are-electric1445
      @we-are-electric1445 2 роки тому

      @@jonathangardner4842 Yes but it is saying the resultant is at 90 degrees to the plane in which the two vectors are already in.

  • @nachomama55
    @nachomama55 7 років тому

    Can somebody please give a real world example when to use each? These formulas mean nothing if I don't know why they are used.

  • @vipin7417
    @vipin7417 8 років тому +5

    thank you so much you clear my doubt in few minutes!!!!

    • @jg394
      @jg394  8 років тому +1

      +Vipin Swami No prob. I'll likely remake this video since it is so popular.

    • @vipin7417
      @vipin7417 8 років тому +1

      sir tell me how to improve my physics ? i am not able to solve questions during entrance exams

    • @jg394
      @jg394  8 років тому

      +Vipin Swami I am not sure which entrance exams you are taking or what they ask. I don't know that I can help except to say that you can practice solving problems that might appear on the test. Understanding each part of the problem and its solution is the key to understanding how to solve future problems. Don't let any details escape your study.

    • @vipin7417
      @vipin7417 8 років тому +1

      I am taking medical entrance exam for MBBS. I practice alot but my mind did not work during exam for physics but same questions i can solve at home

    • @jg394
      @jg394  8 років тому +7

      +Vipin Swami It sounds like you are freaking out during the test.
      This is how I would calm myself down before a test:
      - Study well in advance
      - The day before the test, stop studying, take a mini-vacation, get lots and lots of sleep
      - During the test, I would tell myself that I studied as hard as I could, and I can do no better. I would remind myself that I am human just like the people around me taking the test. The only way I could do better is if I were more confident and relaxed so that I can release my mind to do its thing.

  • @ColossalZonko
    @ColossalZonko 9 років тому +2

    Perfect!! thanks!!

  • @bhuvaneshwarikashi7040
    @bhuvaneshwarikashi7040 7 років тому

    Good job dude!!
    Thnx !!
    :)

  • @haopuhaokip954
    @haopuhaokip954 6 років тому +1

    Thank

  • @shakebraza196
    @shakebraza196 3 роки тому

    Sukriya.

  • @Isaac-hl3nj
    @Isaac-hl3nj 10 років тому +1

    thank you

  • @luismesagrave
    @luismesagrave 9 років тому +6

    Thanks for putting all this content together! Only, you should get a white board and an eraser. I think you are using way too much paper!
    But great job, and thanks again!!

  • @aysha_w5
    @aysha_w5 2 роки тому

    Thank you🥲

  • @samzeg1143
    @samzeg1143 6 років тому

    Why oh why is a dot product scalar and cross product is vector... that is my only issue... I get all of it but why is dot scalar and why does it use cos ? Why is cross product a vector and why does it use sin ?

  • @lunajourney19
    @lunajourney19 4 роки тому

    Ho my god 8 years old but the concept is stil young now it 2020 sep....😄love from india.

  • @shamiksha2008
    @shamiksha2008 5 років тому +1

    Nyc love from india

    • @jg394
      @jg394  5 років тому

      Did you check out the newer video, with 87% fewer errors and mistakes?

  • @kipcrossing
    @kipcrossing 8 років тому

    Dang white out!

  • @priyankachowdary904
    @priyankachowdary904 5 років тому

    What is a*b equals?

  • @pratisthasingh995
    @pratisthasingh995 7 років тому

    it helped me so much.....thanks😅😅

  • @theuniversalchannel9154
    @theuniversalchannel9154 6 років тому

    Thanku sir I have my exam tomorrow love from india

  • @compphysgeek
    @compphysgeek 5 років тому +2

    where's your son? thought he'd be joining you again and soon start his own channel to show off what he's learned :D

  • @vedikaaggarwal2973
    @vedikaaggarwal2973 8 років тому

    real explanation

  • @sabitrakunwar5357
    @sabitrakunwar5357 2 роки тому

    I love it😍

  • @PrinceRaj-kl2kw
    @PrinceRaj-kl2kw 5 років тому +1

    Nice

  • @imppie3754
    @imppie3754 6 років тому +2

    I laughed so hard when he was saying "this is not gonna work is it" at 7:50 nd that squeeze XD lmao

  • @mamtamitawa9270
    @mamtamitawa9270 7 років тому +1

    Sir. What does n hat means

    • @jg394
      @jg394  7 років тому +2

      "n hat" is the basis vector in the n direction. It has unit length, a length of 1.

    • @safiullah5182
      @safiullah5182 6 років тому +1

      It means unit vector

    • @sagarurs2554
      @sagarurs2554 6 років тому +1

      Mamta Mitawa n^ represents unit vector

  • @TaylorChristy
    @TaylorChristy 9 років тому +1

    Very helpful. Thanks so much!