Scalars and Vectors

Поділитися
Вставка
  • Опубліковано 1 гру 2024

КОМЕНТАРІ • 11

  • @jg394
    @jg394  12 років тому +1

    Good point. I was used to calling a scalar x vector a scalar product but it looks like I was wrong to do so.

  • @ShaunRL
    @ShaunRL 12 років тому +3

    Scalar Product is just another name for the dot product, its not scaling a vector, its called that because you get a scalar from the product of two vectors..

  • @a.d.a.8400
    @a.d.a.8400 6 років тому +1

    May God bless you.

  • @kalibarilane7769
    @kalibarilane7769 4 роки тому

    If location of vector doesn't matter...wont it make difference while we calculate torque in some body by a force??

  • @kabirkanha
    @kabirkanha 6 років тому +4

    Perhaps instead of saying "Division is simply multiplication by a fraction" it would be better if you said "Division is simply multiplication by an inverse".

    • @jg394
      @jg394  6 років тому +3

      Yeah, that would work too.

  • @MyPrichu
    @MyPrichu 4 роки тому

    pro ho bhai tum

  • @kamilkarwacki9590
    @kamilkarwacki9590 6 років тому

    What about the tensor product

  • @kaustavbhattacharjee224
    @kaustavbhattacharjee224 7 років тому

    Why Current is not a vector quantity someone please reply

    • @jg394
      @jg394  7 років тому +2

      Current is a vector quantity. In a circuit, however, the current flows along the wires and so you only need to consider the magnitude and not the direction.

    • @dharmeshkumar235
      @dharmeshkumar235 6 років тому +1

      Becus it doesn't follow the triangle addition law