Find the shaded area in the Rectangle | A Very Nice Geometry Problem | Math Olympiad

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 21

  • @AdemolaAderibigbe-j8s
    @AdemolaAderibigbe-j8s 9 годин тому +2

    Using analytical (or coordinate) geometry with origin D(0,0), and points C(10,0), B(10,5), A(0,5), P(4,5), Line DB is y=(0.5)x and line PC is y = -(5/6)x +25/3. We solve these two equations to find that the lines intersect at Q((25/4), (25/8)). Point M (25/4, 5) is where the perpendicular from Q intersects line AB. The shaded area is that of trapezium AMQD minus that of triangle PMQ: (1/2)(5 + (15/8))(25/4) - (1/2)(15/8)(9/4) or 155/8 square units.

  • @zawatsky
    @zawatsky 10 годин тому +1

    ▲BPQ~▲CDQ, BP/CD=PQ/QD=6/10=3/5. Достраиваем в т. E ▲DEQ~▲BCQ - общие отрезки, общее подобие. Тогда BC/DE=3/5=5/(5+x)⇔3(5+x)=5*5=25⇔5+x=25/3=8¹/₃⇔x=8¹/₃-5=3¹/₃. AB=DC и складывается из высот треугольников как 3y+5y=8y=9, откуда y=9/8=1¹/₈, h=5y=5⁵/₈. S(DEQ)=5⁵/₈*8¹/₃/2=5⁵/₈*4¹/₆. S(AEP)=3¹/₃*4/2=3¹/₃*2=6²/₃. Отнимем от предыдущей. 45/8*(25/6)-20/3=(45*25)/(8*6)-6²/₃. 45*25=40*25+5*25=125+100*10=1125. 1125/48=23²¹/₄₈. 23²¹/₄₈-6²/₃=17²¹/₄₈-²/₃. Общий множитель 48*3=150-6=144. 21*3=63, 48*2=100-4=96, 96-63=36-3=33. 17-33/144. 144-33=111. 16¹¹¹/₁₄₄.

    • @AmirgabYT2185
      @AmirgabYT2185 10 годин тому +2

      Почему 2/3?

    • @zawatsky
      @zawatsky 10 годин тому +1

      @AmirgabYT2185 Ой. Точно! 6/10, пардон. Сейчас поправлю.

    • @zawatsky
      @zawatsky 9 годин тому +1

      @AmirgabYT2185 поправил, но где-то снова обсчитался, кажется.

  • @kateknowles8055
    @kateknowles8055 9 годин тому

    Thank you for the problem and the solution.
    It looks easy but I did not find the easier way on my own.
    [ABCD] = 5.(6+4) =50 Triangle ABD is half of 50. [ABD] =25 [CDB] =25 = [DQC] +[ CQB]
    Triangle PBC =(1/2)5.6 [PBC] = 15 so [APCD ] =50-15 [APCD] = 35 PC = sqrt(61) by using Pythagoras' theorem in triangle PBC.
    [PBC] and [CBD] overlap . BD = sqrt(125) by using Pythagoras' theorem in triangle BCD (or ABD)
    The area [ APQD] is shaded red. It is 25 - [PBQ]
    The similar triangles whose areas will be useful here are BQP and DQC
    DC is 10 and BP is 6 so PQ/QC = BQ/QD = 6/10 =3/5
    QC is (5/8)PC QD is 5/8 BD
    S, the semiperimeter of triangle DQC is (1/2)( QC+QD+CD) = (1/2)(5/8 sqrt(61)+ 5/8sqrt(125)+10) 10.9 approx
    Using Heron's formula in triangle DQC s - a = (1/2)(- (5/8)sqrt(61) +(5/8 )sqrt(125) +10) 6.05 approx
    s - b = (1/2)(+(5/8)sqrt(61)- (5/8)sqrt(125) +10) 3.95 approx
    s - c=(1/2)( +(5/8)sqrt(61) +(5/8)sqrt(125) - 10) 0.935 approx
    (not easy enough for me to get a right answer in practice so I worked back to here from the video answer)
    Area [DQC] = sqrt (s.(s - a).( s - b). (s - c) = 125/8
    Area [BQP] =(36/100) [DQC] = (9/25 )( 125/8 ) = 45/8
    Shaded red area = 25 - 45/8
    Shaded red area = 155/8 or 19 +3/8

  • @santiagoarosam430
    @santiagoarosam430 7 годин тому

    Pendientes: de CP =6/5 ; de BD =10/5=2 ---> Si BC=b+(5-b)---> 2b=6(5-b)/5---> b=15/8---> Área APQD=ABD-PBQ =5(4+6)/2 -(6*15/8)/2 =155/8 =19,375 u².
    Gracias y saludos

  • @davidellis1929
    @davidellis1929 33 хвилини тому

    Here's an easier solution. [ABCD]=50, so [DCB]=25. Since triangles PBQ and QDC are similar, DQ:QB=DC:PB=10:6=5:3, so [QDC]=(5/8)*25=125/8 and [BQC]=(3/8)*25=75/8. Then [QDC] and [PBQ] are in the ratio of the squares of their sides, so [PBQ]=((3/5)^2)*(125/8)=45/8. Finally, [APQD]=[ABD]-[PBQ]=25-(45/8)=155/8.

  • @imetroangola17
    @imetroangola17 9 годин тому

    *Solução:*
    É fácil mostrar que os triângulos ∆PBQ e ∆CDQ são semelhantes, logo:
    [CDQ]/[PBQ] = (10/6)² = (5/3)² = 25/9. Assim,
    [CDQ] = 25/9 × [PBQ].
    Note que:
    [BCD] - [PBC] =[CDQ] - [PBQ]
    10×5/2 - 6×5/2 = (25/9 -1)[PBQ]
    10 = 16/9 × [PBQ]
    [PBQ] = 45/8. Logo,
    [APCD] = [ABD] - [PBQ]
    [APCD] = 10×5/2 - 45/8
    [APCD] = 200/8 - 45/8
    *[APCD] = 155/8.*

  • @oscarcastaneda5310
    @oscarcastaneda5310 13 хвилин тому

    Nice and Easy Question : )
    We think Alike !
    I wonder if there's a solution that uses trigonometry since the tangent of angle ABD = 1/2.

  • @ОльгаСоломашенко-ь6ы

    BE=5√5, sin( B)=1/√5. ∆DQC подобен ∆BQP, 6/10=x/(5√5-x). x=15√5/8. S(∆BQP)=0.5*6*15√5/8*sin(B)=45/8=5,625. S=25-5,625=19,375.

  • @giuseppemalaguti435
    @giuseppemalaguti435 11 годин тому

    Conosco tutti gli angoli,con le arctangenti...PQ=a=3√61/8 col teorema dei seni,quindi risulta A=10+(1/2)√41(3√61/8)sin(arctg5/4+arctg5/6)=10+(3/16)√41√61(50/√41√61)=10+150/16=10+75/8=155/8

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 12 годин тому

    Let the area of triangle PQB be equal to x, then [PQD]=(5x)/3, [BQC]=(5x)/3, [DQC]=(25x)/9, and we have [APD]=10, from which x+(5x)/3+(5x)/3+(25x)/9+10=50, from which x=45/8, so the area of APQD is equal to 10+(5/3)*(45/8)=155/8

  • @AmirgabYT2185
    @AmirgabYT2185 10 годин тому +1

    S=19,375 square units

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 години тому

    (4)^2(6)^2(5)^2={16+36+25}=77 {90°A+90°B+90°C+90°D}=360°ABCD/77=50.10ABCD 5^10.10 2^3 (ABCD ➖ 3ABCD+2).

  • @gelbkehlchen
    @gelbkehlchen 4 години тому

    Solution:
    Triangle PQB is similar to triangle DCQ because all angles are equal.
    h = height of triangle PQB,
    i = height of triangle DCQ.
    (1) h+i = 5
    Due to the similarity:
    (2) i/(4+6) = h/6 |*10 ⟹ (2a) i = h*10/6 |in (1) ⟹
    (1a) h+h*10/6 = 5 ⟹
    (1b) h*(1+10/6) = 5 ⟹
    (1c) h*16/6 = 5 |*6/16 ⟹
    (1d) h = 5*6/16 = 30/16 = 15/8 ⟹
    Colored area = 5*10/2-6/2*15/8 = 25-45/8 = (200-45)/8 = 155/8 = 19.375

  • @中西康記
    @中西康記 6 годин тому

    PM=⑥、MQ=⑤、MB=⑩ 1/2×⑯×⑤

  • @nenetstree914
    @nenetstree914 12 годин тому

    155/8

  • @hongningsuen1348
    @hongningsuen1348 7 годин тому

    Method using side-area-ratio of trapezium divided by diagonals & equal height triangles:
    1. Join DP to form trapezium DCBP and triangle ADP.
    2. Trapezium DCBP is divided by its diagonals into 4 trianlges. Let top side be T = 6 and bottom side be B = 4+6 = 10.
    The ratio area of top triangle : left triangle:right triange: bottom triangle = T^2:TB:TB:B^2 = 36:60:60:100
    Ratio area of triangle BDP = top triangle + left triangle = 36 + 60 = 96
    3. Base side ratio of triangle ADP: triangle BDP = 4:6. Hence ratio area of triangle ADP = 96 (4/6) = 64
    4. Ratio area of shaded region = left triangle + triangle ADP = 60 + 64 = 124
    5. Ratio area of rectangle = sum of all triangles = 36 + 60 + 60 + 100 + 64 = 320
    Actual area of rectangle = 5 (4 + 6) = 50
    Hence actual area : ratio area is 50:320 = 5/32
    6. Actual area of shaded region = 124 (5/32) = 155/8.
    This is a typical exam side-area-ratio MCQ to be solved in 90 seconds.