Spain Math Olympiad | A Very Nice Geometry Problem

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ •

  • @Z-eng0
    @Z-eng0 18 днів тому +2

    Can't believe I was that close to getting the answer.
    Even thought I found the ratio, did the ratio variable, and found the similarity of the 2 right triangles, but didn't pursue it by trying to spread the ratio variable for the other variables, thinking it can't get me anywhere, it can't get me to the answer I'm looking for, but once I saw you pursuing it, I immediately went back, pursued it, and got the answer straight away.
    Fascinating how, sometimes, pursuing seemingly pointless things can get you shocking results.

  • @marcgriselhubert3915
    @marcgriselhubert3915 19 днів тому +2

    Let's note c the side length of the square, a = AP and b = PQ. Let's also note H the orthogonal projection of Q (or P) on (BC).
    We have: 2.(area of APQB) = a.(c + b) = 18 and 2.(area of DPQC) = (c -a). (c + b) = 8, so a/(c - a) = 18/8 = 9/4, which gives that a = (9/13).c
    In triangle BQP: QH^2 = HB.HC = a.(c -a) = ((9/13).c).((4/13).c) = (36/169).(c^2), so QH = (6/13).c.
    As QH = c - b we have then c - b = (6/13).c and b = (7/13).c.
    2.(area of APQB) was a.(c + b), so it is ((9/13).c).((20/13).c) = (180/169).(c^2)
    So we get that (180/169).(c^2) = 18, which gives that c^2 = 169/10.
    Finally the area of triangle BCQ is c^2 - 9 - 4 = (169/10) - 13 = 39/10.

  • @santiagoarosam430
    @santiagoarosam430 7 днів тому +1

    Razón entre áreas =s²=4/9---> Razón de semejanza =s=2/3---> Si BQ=b---> QC=2b/3.
    El cuadrado ABCD se puede dividir en cuatro triángulos BCQ, cuyas hipotenusas son los cuatro lados de ABCD, y un cuadrado central de lado BQ-QC=b/3 ---> Área BCQ =T =b*(2b/3)/2 =b²/3---> Área del cuadrado central =b²/9 =T/3 ---> 3T+(T/3) =10T/3 =9+4=13 ---> T=39/10 = Área BQC.
    Gracias y saludos.

  • @oscarcastaneda5310
    @oscarcastaneda5310 18 днів тому +2

    An Elegant Solution : )
    The only difference in our solutions was that of finding the height by using h = sqrt(9a * 4a).
    I suppose my subconscious wanted to make use of that semicircle : )

  • @soli9mana-soli4953
    @soli9mana-soli4953 17 днів тому +1

    I solved it this way. I drew perpendiculars to the sides of the square passing through the point Q. They divide the square into 4 rectangles whose areas we can calculate. The two rectangles at the bottom are divided by the sides of the triangle BCQ each into two congruent triangles and let a be the area of ​​the triangles at the bottom left and b be the area of ​​those at the bottom right. Therefore:
    the area of ​​the lower left rectangle is 2a
    the area of ​​the lower right rectangle is 2b
    the area of ​​the upper left rectangle is 9 - a
    the area of ​​the upper right rectangle is 4 - b
    It is easy to demonstrate that the cross product of the areas of the rectangles is equal, therefore we can write:
    (9 - a)*2b = (4 - b)*2a
    from which:
    b = 4/9a
    this tells us that the area of ​​the triangle QMC is 4/9 the area of ​​the triangle QMB, therefore the constant of proportionality K = √4/9=2/3
    Since QMC and QMB are similar it follows that given BM = x
    QM = 2/3x
    MC = 4/9x
    BC = x + 4/9x = 13/9x
    PQ = 13/9x - 2/3x = 7/9x
    Area trapezoidAPQB=(13/9x + 7/9x)*x*1/2 = 9
    x = 9/10√10
    BQC Area = 13/9*(9/10√10)*2/3*(9/10√10)*1/2 =39/10

  • @伸-x3s
    @伸-x3s 15 днів тому

    AP=9k
    DP=4k (k> 0)
    PQ=ak
    台形PQCDの面積
    (13+a)k×4k/2=4
    ak=2/k-13k
    PQを延長した直線とBCとの
    交点をRとすると、
    QR=26k-2/k
    ここで、BCを直径とする
    外接円の円周上にQがあるので
    、方べきの定理より
    (26k-2/k)^2=4k×9k
    26k-2/k=6k
    k=1/√(10)
    △QBCの面積=
    169k^2-4-9
    =39/10

  • @zawatsky
    @zawatsky 18 днів тому

    9:03 - а вот об этом я и не вспомнил! Можно ж высоту было быстро из подобия найти: 4a/h=h/9a⇔h²=4a/9a=4/9⇔h=2/3. Тогда 169a²=13+13a*(2/3)÷2=13(1+a/3)⇔13a²=1+a/3⇔13a²-a/3-1=0. D=1/9+4*13=49+1/9, a=(1/9+√(49+1/9)). √(49+1/9)=√(442/9)=2√110½/3. Чтобы получить площадь, надо разделить ещё на 3, итого 2√110½/9.

  • @antryzh7891
    @antryzh7891 18 днів тому

    PQ=b, AB=BC=CD=AD=a, PD=h, AP=a-h. By theorem about altitude of right triangle and formulas of square of trapezoid (a+b)(a-h)/2=9, (a+b)h/2=4, (a-b)^2=(a-h)h. By deciding of system of equations a^2=16,9 - square of square and 3,9 - square of right triangle.

  • @michaelpieters1844
    @michaelpieters1844 9 днів тому

    Start with the point Q lying on a circle with diameter B (0, 0) and C(x, 0). Give point Q parametric equations (x/2 + x/2 * cos theta, x/2 * sin theta). Calculating the areas gives 2 equations with unknowns x and theta: [x^2*(4 - sin theta)*(1 + cos theta) = 9*8, x^2*(4 - sin theta)*(1 - cos theta) = 4*8]. Quick calculation gives cos theta = 5/13, sin theta = 12/13 and x^2 = 13^2/10. Solution is 13^2/10 - 9 - 4 = 39/10.

  • @zawatsky
    @zawatsky 18 днів тому +1

    Имеем систему: c²=a²+b², c²=9+4+ab/2, ch/2=ab/2, a²=(9x)²+h², b²=(4x)²+h², 9x+4x=c. Попробуем её упростить. c=13x. 169x²=81x²+16x²+2h²⇔2h²=(169-81-16)x²⇔h²=(84½-40½-8)x²=(44-8)x²=(40-4)x²=36x²⇔h=6x, т. е. наша искомая площадь S=6*13x=78x. При этом мы знаем, что общая площадь 9x*9x=81x², значит 81x²-78x=13⇔81x²-78x-13=0. D=6084+4*81*13=10296, √D=√10296=4√643½. x=(78±4√643½)/162, оставляем положительный x=(78+4√643½)/162. Множим на 78: S=78(78+4√643½)/162=(6084+312√643½)/162=37+90/162+52√643½/27=37+45/81+1²⁵/₂₇√643½. В общем, как-то так... %)

    • @ناصريناصر-س4ب
      @ناصريناصر-س4ب 18 днів тому +1

      Good method, but I will correct some mistakes for you, my friend. The area of the right triangle is s=(6x*13x)/2=39x², and the equation becomes (13x)²-39x²=13, and from it x²=1/10, and the area of the triangle is s=39x²=39/10.

    • @zawatsky
      @zawatsky 18 днів тому

      @@ناصريناصر-س4ب Когда я решаю ночью - становлюсь очень невнимательным. Я догадывался, что решаю правильно, просто где-то посчитал неверно. Хорошо, что деньги считать легче, иначе меня бы обсчитывали продавцы. %)

    • @ناصريناصر-س4ب
      @ناصريناصر-س4ب 18 днів тому

      No problem again you have to sleep well so you can get some rest and think well

    • @zawatsky
      @zawatsky 18 днів тому +1

      @@ناصريناصر-س4ب спасибо. У меня ночные процедуры - болею, но постараюсь пораньше с ними заканчивать - тут согласен.

  • @kateknowles8055
    @kateknowles8055 18 днів тому +1

    Letting the height of triangle BQC = h, and AB=BC=CD=AD = k
    and drawing a line L R parallel to BC through the midpoints M,N of BQ and QC with L on AB and R on CD, [ALRD] = 9 + 4 and (1/4) [BQC] = [LMB] +[RCN]
    So k.k which is [ABCD] is [ ALRD] + 4 [LMB] +4 [RCN]
    (Almost there but it is Christmas so I will be back later)
    AP =9/13 k PD = 4/13 k
    9/13 k( k-h/2) =9 so ( k. k -k.h/2 ) = 13
    QB.QB = h.h + (81/169) k.k QC .QC= h.h +( 16/169)k.k
    so h.h + 81/169 k.k + h.h + 16/169 k.k = BC.BC = k.k three uses of Pythagoras' theorem
    2 h.h = k.k (1 - (81+16)/169) and
    QB.QB.QC.QC = Four times the square of the shaded area. = k.h.k.h
    = (h.h + (81/169)k.k) (h.h +(16/169)k.k) = h^4 + k.h.k.h (97/169) + k^4( 16.81/(169.169)
    h^4 - ((169-97)/169 )k.h.k.h + (16.81/(169.169) k^4 =0 Solving a quadratic h^2 = ( 72/169 )k.k .... +/- sqrt (b^2-4ac))/2a etc
    and still getting only h^2 in terms of k^2is not way to go about this

    • @kateknowles8055
      @kateknowles8055 2 дні тому

      Another attempt
      Also OQ = (1/2) k where O is the midoint of BC because BQC is a right-angle . 1/2- 4/13 = 5/26 9/13- 1/2 = 5/26
      height is perpendicular to base so QOS is a small right-angled triangle with sides h, (5/26)k and (1/2)k
      so h is 12/26 k in a (5,12,13) triangle h = ( 6/13) k PQ = 7/13 k
      13 =(7/13 k+ 3/13k).k 13 is ( 10/13)k.k k.k is 16 + 9/10 k is (1 +3/10)sqrt(10)
      [BQC] has an area (1/2).base. height)( k/2)(6k/13) =(3/13)[ABCD] =(169/10)(3/13) = 39/10
      [BQC] = 3 + 9/10

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 18 днів тому

    (9)^2 (4)^2={81+16}=97{90°A90°B+90°C+90°D}=360°ABCD/97=3.69ABCD 3.6^3^2 12^33^1 2^1^3^1 23 (ABCD ➖ 3ABCD+2).

  • @DalvanPerez
    @DalvanPerez 16 днів тому

    Muito bela resolution!!

  • @MathTrick-t7v
    @MathTrick-t7v 15 днів тому

    Amazing

  • @fhffhff
    @fhffhff 18 днів тому

    B=9/4;9/√10 a=13/4;13/√10 S∆=0,5a*(a-c)=a²-13=-2 7/16×;3,9✓

  • @wasimahmad-t6c
    @wasimahmad-t6c 18 днів тому

    21.125-13=8.125

  • @VladimirMihalicka
    @VladimirMihalicka 18 днів тому

    V zadaní sa neuvádza, že ide o štvorec

    • @kateknowles8055
      @kateknowles8055 18 днів тому

      Nine hours later it does state that ABCD is a square. Happy Christmas.