Find the length X in the Rectangle | Sweden Math Olympiad Geometry Problem

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ •

  • @EddieDraaisma
    @EddieDraaisma День тому +6

    sin(phi) = a / 7; cos(phi) = x / 7; sin(2 * phi) = 2.sin(phi).cos(phi) = 2 * a / 7 * x / 7 = cos(90 - 2 * phi) = 2*a / 9 => x = 7*7/9 = 49/9

  • @zampone
    @zampone День тому +3

    I also got it with: 7sin(phi)=a and 9sin(2phi)=2a; 7sin(phi)=9sin(phi)cos(phi); cos (phi)=7/9; x=7*7/9

  • @kateknowles8055
    @kateknowles8055 День тому +1

    Thank you, Math Booster.
    I got my answer quickly (by climbing a long and difficult path and then seeing a much better way.
    X/7 = cosine (theta)
    ## tan (theta) = t where t.t + 1 = 1/ cos^2(theta) = sec^2 (theta) = 49/(X.X) t.t = 49/(X.X) -1
    ~~ Extending both BC and AN to meet at E, there are two simlar triangles EBA and ECN. Letting a. CN = X a .CE = BE and a..EN = EA
    ## 9 + EN = a.EN (a-1).EN =9
    ~~ (a-1) .CE = BC and a.CN = X tan (2.theta)= BE/ X
    ## Angle AND is also 2.theta , because ND is parallel with BA.
    ~~ X-NC = ND and (a-1)CE = AD tan (2.theta) = AD/ND so BE/X = AD/ND X= BE.ND/AD = a.CE tan (2.theta)
    ## tan(2.theta) = 2t/ (1-t.t) ( It is positive and t

  • @giuseppemalaguti435
    @giuseppemalaguti435 День тому +3

    x=7cosθ...a=7sinθ...2a=9cos(90-2θ)=9sin2θ..a=9sinθcosθ=7sinθ=>cosθ=7/9=>x=7*7/9=49/9

  • @hadigayar6786
    @hadigayar6786 День тому +4

    extend AM to point Q
    triangle ANQ is isosceles triangle
    AM=MQ then MN is a height
    AMN is a right triangle
    cos@=7/9=x/7
    x=49/9(solved)
    thank u sir for this amazing video

    • @marioalb9726
      @marioalb9726 18 годин тому +1

      Not so amazing vídeo!!!
      He looked for the most complicated solution
      What is really amazing are the subscribers who propose much simpler and more elegant solutions!!!!

  • @Z-eng0
    @Z-eng0 День тому

    Very beautiful puzzle here, I was able to finish most of the steps. the only part I missed was connecting MN, but I was able to continue from there and show the congruence and find X

  • @marioalb9726
    @marioalb9726 18 годин тому +1

    2*7*cos(90°-θ) = 9 cos(90°-2θ)
    14 sin θ = 9 sin 2θ
    14/9 sinθ = 2 sinθ cosθ
    cosθ = 7/9
    x = 7 cosθ= 49/9= 5,444 cm ( Solved √ )

  • @RAG981
    @RAG981 День тому +1

    At 3:47, MNP is similar to AMP so a/x = (9-x)/a, and this gives a^2 + a^2 =9x.
    But in AMP, a^2 + x^2 = 49, so 9x = 49, and there is your answer.

  • @harikatragadda
    @harikatragadda День тому +1

    ∠PMN =∠CMN = θ
    and ∠AMB =∠AMP = 90-θ
    Hence ∠AMP + ∠PMN =90°,
    making ∆AMN a Right triangle Similar to ∆ABM.
    X/7=7/9
    X=49/9

  • @marioalb9726
    @marioalb9726 18 годин тому +1

    Angle AMN=90° because MB=MC
    Similarity of right triangles:
    x/7=7/9 --> x= 49/9 cm (Solved √ )

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب День тому +1

    Triangles ABM and AMN are right triangles, so cos(θ)=AB/AM=AM/AN, i.e. x/7=7/9, so x=49/9.

  • @СтасМ-ъ8б
    @СтасМ-ъ8б 14 годин тому

    ∠AND=2θ, ∠MNP=∠MNC=90°-θ. ∠MAN=θ. Тогда ∠AMN=90°.
    По теореме Пифагора, тогда MN=4√2. И 7^(2) - x^(2)= (4√2)^(2) - (9-x)^(2).
    Находим x. x=49/9

  • @jimlocke9320
    @jimlocke9320 День тому

    Here's a hard way to solve the problem, but it does not use constructions! tan(Θ) = MB/BA = a/x. However, x² + a² = 7², so x = √(49 - a²) and tan(Θ) = a/(√(49 - a²)).

  • @Rudepropre
    @Rudepropre 12 годин тому

    Sinc=a/x cosc=a/7 sin2c=2a/9. Sin2c=2sinc cosc=2* a/7 * x/7=2a/9.
    X=49/9

  • @Abdelfattah-hr8tt
    @Abdelfattah-hr8tt День тому

    شكرا لكم

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    (7)^2 (9)^2={49+81}=130 {90°A+90°B+90°C+90°D}=360°ABCD/130=2.100ABCD 2^10^10 2.2^5^2^5 1.1^1^2^1 2^1 (ABCD ➖ 2ABCD+1).

    • @d-8664
      @d-8664 18 годин тому

      This is not readable.

  • @Sllow118168
    @Sllow118168 День тому

    Easier and simpler to use trigonometry to find x.

  • @nenetstree914
    @nenetstree914 День тому

    49/9

  • @blogfilmes1134
    @blogfilmes1134 День тому

    Demorei mas acertei !