Розмір відео: 1280 X 720853 X 480640 X 360
Показувати елементи керування програвачем
Автоматичне відтворення
Автоповтор
me commenting on this from home during school hours be like
what are you doing bruh
why didn't you come
also we're playing kinetic energy in band
also in math we did a participation quiz and there's a paper homework so haha
the teacher didn't post the homework so yeah you can't get the hw
jimmy has to cook for the AUGSAOM problem 3 because aint no way he can solve problem 10:\[\left\{\begin{array}{lll} \min\limits_{x \in \mathbb{R}^{24}} & \frac{\displaystyle \int_{0}^{\infty} \int_{0}^{x_1} \int_{0}^{x_2} \int_{0}^{x_3} \dots \int_{0}^{x_{24}} \prod_{i=1}^{24} \sin(x_i) \exp(x_i^2) \, dx_{24} \cdots dx_1}{\displaystyle \prod_{i=1}^{24} (1 + x_i^2) + \sum_{i=1}^{24} \Gamma(x_i) + \zeta(3) + \operatorname{erf}(x_{24})} \\[10pt] \hspace{0.2cm} \text{s.t.} & abla f(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} \left( \prod_{i=1}^{24} \cos(x_i) ight) \\ \vdots \\ \frac{\partial}{\partial x_{24}} \left( \sum_{i=1}^{24} \exp(x_i) \sin(x_i) ight) \end{bmatrix}, \\[10pt] & \mathbf{M}x = \begin{bmatrix} \Gamma(x_1) \\ \sin(x_2 + x_3) \\ \vdots \\ \zeta(x_{24}) \end{bmatrix}, \text{ where } \mathbf{M} \in \mathbb{R}^{24 \times 24}, \\[10pt] & \displaystyle \sum_{i=1}^{24} x_i^2 - \prod_{i=1}^{24} x_i \leq 1, \\[10pt] & \displaystyle \int_{0}^{\pi/2} \prod_{i=1}^{24} \sin(x_i t) dt \leq \exp\left(\sum_{i=1}^{24} x_iight), \\[10pt] & x_i \geq 0, \, i = 1, 2, \dots, 24.\end{array}ight.\]
hell nah i'm not doing that
@chicken_rice0123 that's nothing compared to the equivalent AGIMO problem:\[\left\{\begin{array}{lll}\min\limits_{\mathbf{x} \in \mathbb{H}^{1024}} & \frac{\displaystyle \int_{0}^{\infty} \cdots \int_{0}^{x_1} \prod_{i=1}^{1024} \sin\left(x_i^2ight) \exp\left(x_i^3ight) \prod_{j=1}^{1024} \cos\left(\sum_{k=1}^j x_kight) dx_{1024} \cdots dx_1}{\displaystyle \prod_{i=1}^{1024} \left(1 + x_i^4ight) + \sum_{i=1}^{1024} \Gamma(x_i) + \zeta(4) + \operatorname{erf}\left(\sum_{i=1}^{1024} x_i^2ight)} \\[20pt]\text{s.t.} & abla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial}{\partial x_1} \left( \prod_{i=1}^{1024} \cos(x_i^3 + x_i) + \sum_{j=1}^{1024} \zeta(x_j) ight) \\ \frac{\partial}{\partial x_2} \left( \prod_{k=1}^{1024} \Gamma(x_k) \sin\left(x_k^2ight) ight) \\ \vdots \\ \frac{\partial}{\partial x_{1024}} \left( \sum_{m=1}^{1024} x_m^5 \cos\left(x_m^2ight) + \prod_{j=1}^{1024} \exp\left(x_jight) ight)\end{bmatrix} \\[20pt]& \mathbf{M}_1 \mathbf{x} + \mathbf{M}_2 \mathbf{x}^2 + \mathbf{M}_3 \mathbf{x}^3 = \begin{bmatrix} \Gamma(x_1) + \prod_{j=1}^{1024} \sin(x_j^2) \\ \sum_{k=1}^{1024} \cos(x_k^3) + \zeta(x_2) \\ \vdots \\ \prod_{p=1}^{1024} \left(\Gamma(x_p) + x_p^4ight)\end{bmatrix}, \quad \mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3 \in \mathbb{R}^{1024 \times 1024}, \\[20pt]& \sum_{i=1}^{1024} x_i^3 - \prod_{i=1}^{1024} x_i^2 + \sum_{j=1}^{1024} \prod_{k=1}^j \sin(x_k^3) \leq 1, \\[20pt]& \int_{0}^{\pi/2} \prod_{i=1}^{1024} \sin(x_i t) dt \leq \exp\left(\sum_{i=1}^{1024} x_i + \sum_{j=1}^{1024} x_j^2ight), \\[20pt]& \sum_{i=1}^{1024} \left(x_i^2 + \left|x_iight|_{\mathbb{H}}ight) \leq 1024, \\[20pt]& \mathbf{A} \mathbf{x} \mathbf{B} + \mathbf{C} \mathbf{x}^2 \mathbf{D} = \mathbf{x}, \quad \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \in \mathbb{C}^{1024 \times 1024}, \\[20pt]& \prod_{j=1}^{1024} \sum_{k=1}^j \sin\left(x_j^3 + x_k^2 + \zeta(x_k)ight) = \zeta\left(\prod_{i=1}^{1024} x_iight) + \Gamma\left(\sum_{i=1}^{1024} x_i^5ight), \\[20pt]& \prod_{i=1}^{1024} \cos\left(\sum_{j=1}^i \prod_{k=1}^j x_k^2ight) = \int_{0}^\infty \prod_{i=1}^{1024} \sin(x_i^3 t) dt, \\[20pt]& x_i \geq 0, \quad i = 1, 2, \dots, 1024, \quad x_i \in \mathbb{H}.\end{array}ight.\]
@chicken_rice0123 my dad got 11/25 on the AMC 8Z
@chicken_rice0123 my dad got 11/25 on the AMC 8Z.
me commenting on this from home during school hours be like
what are you doing bruh
why didn't you come
also we're playing kinetic energy in band
also in math we did a participation quiz and there's a paper homework so haha
the teacher didn't post the homework so yeah you can't get the hw
jimmy has to cook for the AUGSAOM problem 3 because aint no way he can solve problem 10:
\[
\left\{
\begin{array}{lll}
\min\limits_{x \in \mathbb{R}^{24}} & \frac{\displaystyle \int_{0}^{\infty} \int_{0}^{x_1} \int_{0}^{x_2} \int_{0}^{x_3} \dots \int_{0}^{x_{24}} \prod_{i=1}^{24} \sin(x_i) \exp(x_i^2) \, dx_{24} \cdots dx_1}{\displaystyle \prod_{i=1}^{24} (1 + x_i^2) + \sum_{i=1}^{24} \Gamma(x_i) + \zeta(3) + \operatorname{erf}(x_{24})} \\[10pt]
\hspace{0.2cm} \text{s.t.} &
abla f(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} \left( \prod_{i=1}^{24} \cos(x_i)
ight) \\ \vdots \\ \frac{\partial}{\partial x_{24}} \left( \sum_{i=1}^{24} \exp(x_i) \sin(x_i)
ight) \end{bmatrix}, \\[10pt]
& \mathbf{M}x = \begin{bmatrix} \Gamma(x_1) \\ \sin(x_2 + x_3) \\ \vdots \\ \zeta(x_{24}) \end{bmatrix}, \text{ where } \mathbf{M} \in \mathbb{R}^{24 \times 24}, \\[10pt]
& \displaystyle \sum_{i=1}^{24} x_i^2 - \prod_{i=1}^{24} x_i \leq 1, \\[10pt]
& \displaystyle \int_{0}^{\pi/2} \prod_{i=1}^{24} \sin(x_i t) dt \leq \exp\left(\sum_{i=1}^{24} x_i
ight), \\[10pt]
& x_i \geq 0, \, i = 1, 2, \dots, 24.
\end{array}
ight.
\]
hell nah i'm not doing that
@chicken_rice0123 that's nothing compared to the equivalent AGIMO problem:
\[
\left\{
\begin{array}{lll}
\min\limits_{\mathbf{x} \in \mathbb{H}^{1024}} &
\frac{\displaystyle
\int_{0}^{\infty} \cdots \int_{0}^{x_1} \prod_{i=1}^{1024} \sin\left(x_i^2
ight) \exp\left(x_i^3
ight)
\prod_{j=1}^{1024} \cos\left(\sum_{k=1}^j x_k
ight) dx_{1024} \cdots dx_1}
{\displaystyle \prod_{i=1}^{1024} \left(1 + x_i^4
ight) + \sum_{i=1}^{1024} \Gamma(x_i) + \zeta(4) + \operatorname{erf}\left(\sum_{i=1}^{1024} x_i^2
ight)} \\[20pt]
\text{s.t.} &
abla f(\mathbf{x}) = \begin{bmatrix}
\frac{\partial}{\partial x_1} \left( \prod_{i=1}^{1024} \cos(x_i^3 + x_i) + \sum_{j=1}^{1024} \zeta(x_j)
ight) \\
\frac{\partial}{\partial x_2} \left( \prod_{k=1}^{1024} \Gamma(x_k) \sin\left(x_k^2
ight)
ight) \\
\vdots \\
\frac{\partial}{\partial x_{1024}} \left( \sum_{m=1}^{1024} x_m^5 \cos\left(x_m^2
ight) + \prod_{j=1}^{1024} \exp\left(x_j
ight)
ight)
\end{bmatrix} \\[20pt]
& \mathbf{M}_1 \mathbf{x} + \mathbf{M}_2 \mathbf{x}^2 + \mathbf{M}_3 \mathbf{x}^3 = \begin{bmatrix}
\Gamma(x_1) + \prod_{j=1}^{1024} \sin(x_j^2) \\
\sum_{k=1}^{1024} \cos(x_k^3) + \zeta(x_2) \\
\vdots \\
\prod_{p=1}^{1024} \left(\Gamma(x_p) + x_p^4
ight)
\end{bmatrix}, \quad \mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3 \in \mathbb{R}^{1024 \times 1024}, \\[20pt]
& \sum_{i=1}^{1024} x_i^3 - \prod_{i=1}^{1024} x_i^2 + \sum_{j=1}^{1024} \prod_{k=1}^j \sin(x_k^3) \leq 1, \\[20pt]
& \int_{0}^{\pi/2} \prod_{i=1}^{1024} \sin(x_i t) dt \leq \exp\left(\sum_{i=1}^{1024} x_i + \sum_{j=1}^{1024} x_j^2
ight), \\[20pt]
& \sum_{i=1}^{1024} \left(x_i^2 + \left|x_i
ight|_{\mathbb{H}}
ight) \leq 1024, \\[20pt]
& \mathbf{A} \mathbf{x} \mathbf{B} + \mathbf{C} \mathbf{x}^2 \mathbf{D} = \mathbf{x}, \quad \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \in \mathbb{C}^{1024 \times 1024}, \\[20pt]
& \prod_{j=1}^{1024} \sum_{k=1}^j \sin\left(x_j^3 + x_k^2 + \zeta(x_k)
ight) = \zeta\left(\prod_{i=1}^{1024} x_i
ight) + \Gamma\left(\sum_{i=1}^{1024} x_i^5
ight), \\[20pt]
& \prod_{i=1}^{1024} \cos\left(\sum_{j=1}^i \prod_{k=1}^j x_k^2
ight) = \int_{0}^\infty \prod_{i=1}^{1024} \sin(x_i^3 t) dt, \\[20pt]
& x_i \geq 0, \quad i = 1, 2, \dots, 1024, \quad x_i \in \mathbb{H}.
\end{array}
ight.
\]
@chicken_rice0123 my dad got 11/25 on the AMC 8Z
@chicken_rice0123 my dad got 11/25 on the AMC 8Z.
@chicken_rice0123 my dad got 11/25 on the AMC 8Z