a prime circle

Поділитися
Вставка
  • Опубліковано 31 гру 2024
  • We look at a nice problem from a Finnish math contest.
    Suggest a problem: forms.gle/ea7P...
    Please Subscribe: www.youtube.co...
    Merch: teespring.com/...
    Personal Website: www.michael-pen...
    Randolph College Math: www.randolphcol...
    Randolph College Math and Science on Facebook: / randolph.science
    Research Gate profile: www.researchga...
    Google Scholar profile: scholar.google...
    If you are going to use an ad-blocker, considering using brave and tipping me BAT!
    brave.com/sdp793
    Buy textbooks here and help me out: amzn.to/31Bj9ye
    Buy an amazon gift card and help me out: amzn.to/2PComAf
    Books I like:
    Sacred Mathematics: Japanese Temple Geometry: amzn.to/2ZIadH9
    Electricity and Magnetism for Mathematicians: amzn.to/2H8ePzL
    Abstract Algebra:
    Judson(online): abstract.ups.edu/
    Judson(print): amzn.to/2Xg92wD
    Dummit and Foote: amzn.to/2zYOrok
    Gallian: amzn.to/2zg4YEo
    Artin: amzn.to/2LQ8l7C
    Differential Forms:
    Bachman: amzn.to/2z9wljH
    Number Theory:
    Crisman(online): math.gordon.edu...
    Strayer: amzn.to/3bXwLah
    Andrews: amzn.to/2zWlOZ0
    Analysis:
    Abbot: amzn.to/3cwYtuF
    How to think about Analysis: amzn.to/2AIhwVm
    Calculus:
    OpenStax(online): openstax.org/s...
    OpenStax Vol 1: amzn.to/2zlreN8
    OpenStax Vol 2: amzn.to/2TtwoxH
    OpenStax Vol 3: amzn.to/3bPJ3Bn
    My Filming Equipment:
    Camera: amzn.to/3kx2JzE
    Lense: amzn.to/2PFxPXA
    Audio Recorder: amzn.to/2XLzkaZ
    Microphones: amzn.to/3fJED0T
    Lights: amzn.to/2XHxRT0
    White Chalk: amzn.to/3ipu3Oh
    Color Chalk: amzn.to/2XL6eIJ

КОМЕНТАРІ • 101

  • @게르마늄-w5b
    @게르마늄-w5b 3 роки тому +142

    In the part 8:41 there's a fallacy.
    The factorization by x+1 only holds when n+1 is odd(n is even), whereas if n is odd, there's no particular prime that divides all 2^(n+1)+1. (It is clear by the example; Fermat Primes, form of 2^2^n+1)
    However, we can show that n should be even. If n is odd, 2^(n+1)+1 is congruent with 2 on modulo 3. A perfect square, (p^m)^2 should be congurent with 0 or 1 on modulo 3. Hence it contradicts, so n should be even.

    • @timurpryadilin8830
      @timurpryadilin8830 3 роки тому +5

      i was just about to comment that !

    • @kemalkayraergin5655
      @kemalkayraergin5655 3 роки тому +7

      thank you for explaining why n is even

    • @wesleydeng71
      @wesleydeng71 3 роки тому +5

      4:07 He should've moved p^2m to the right side which would avoid the error and lead to a quicker solution.

    • @rohitg1529
      @rohitg1529 3 роки тому +4

      Mersenne primes are of the form 2^n - 1 not 2^n + 1
      x^n - 1 = (x-1)*p(x) for some polynomial p(x), but if x=2 then (x-1) = 1 then the mersenne number is not necessarily prime
      What he showed in the video is accurate (but yes, only for odd n)

    • @게르마늄-w5b
      @게르마늄-w5b 3 роки тому +2

      @@rohitg1529 yep thanks for the point!
      I was meant to say Fermat Primes, by the way. But since there exists some primes, there are no common factor that divides them all

  • @SayHelllllo
    @SayHelllllo 3 роки тому +92

    we are getting closer and closer to the Fermat's Last Theorem

    • @wisdomokoro8898
      @wisdomokoro8898 3 роки тому +4

      😂 The journey was Single for Wiles Andrew 💔🤫

    • @quickyummy8120
      @quickyummy8120 3 роки тому +1

      I found another amazing Olympiad problem here
      ua-cam.com/video/rnWJv_UxOJY/v-deo.html

    • @markvp71
      @markvp71 3 роки тому

      Yeah, like having walked the first mile of a thousand miles.

  • @manucitomx
    @manucitomx 3 роки тому +54

    Holy Diophantus, professor, what a way to hide a 3-4-5 triangle!
    Thank you!

    • @quickyummy8120
      @quickyummy8120 3 роки тому +1

      I found another amazing Olympiad problem here
      ua-cam.com/video/rnWJv_UxOJY/v-deo.html

  • @WhattheHectogon
    @WhattheHectogon 3 роки тому +21

    At 11:25, a simpler argument would be to ask, which two powers of 2 differ by 2? Why 2^2 and 2^1, course :)

    • @replicaacliper
      @replicaacliper 3 роки тому +7

      In fact that trick can be used as early as 7:30 and it would shorten the video by a few minutes.

    • @davidblauyoutube
      @davidblauyoutube 3 роки тому +2

      @@replicaacliper I came here to make this exact comment. Well done, mathematicians of UA-cam!

  • @Qermaq
    @Qermaq 3 роки тому +8

    I noticed right off that this is a Pythagorean triple with a and b both having one prime factor, if multiple times. As all PTs except one have at least one multi-prime composite leg, it's gotta be that triple.

  • @federicovolpe3389
    @federicovolpe3389 3 роки тому +1

    8:21 the factorization is true only if n is even (and thus n+1 is odd).
    You could've factored p^2m-1 into (p^m+1)(p^m-1), after that since they must be both powers of 2 and they differ by 2, they can only be 2 and 4, so p^m=3 and so p=3 m=1. Then 2^(m+1)=3^2-1, so m=2. Subbing back into the original equation you get r=5.

  • @SlipperyTeeth
    @SlipperyTeeth 3 роки тому +2

    At 7:20 you could've cut out a step by factoring the difference of squares right then and there. You'd get that p^m is trapped between two powers of 2 and thus p^m=3.

  • @victorclaytonbarnett2959
    @victorclaytonbarnett2959 3 роки тому +7

    Idea for a livestream: solving contest problems that you're seeing for the first time. I would love to see the process in action!

    • @quickyummy8120
      @quickyummy8120 3 роки тому

      I found another amazing Olympiad problem here
      ua-cam.com/video/rnWJv_UxOJY/v-deo.html

  • @GreenMeansGOF
    @GreenMeansGOF 3 роки тому +5

    8:20 You are assuming that n is even(also the plus/minus 1 should just be +1 but whatever). I wonder if we can justify that assumption.

  • @brankojangelovski3105
    @brankojangelovski3105 3 роки тому +7

    You didnt show that n+1 must be odd in order to do that factorization at 8:41

  • @goodplacetostop2973
    @goodplacetostop2973 3 роки тому +18

    4:38 Good Place To Be
    13:37 Good Place To Stop

  • @markvp71
    @markvp71 3 роки тому

    I started with the fact that if a^2+b^2=c^2, with a, b and c integers, then there are integers x, y, and z such that a = x^2-y^2, b = 2xy and c = x^2 + y^2. It is easy to see that z = 1 in this problem. Since a or b has to be a power of 2, it can only be b, so x = 2^s and y = 2^t. From there on it is easy.

  • @Pablo360able
    @Pablo360able 3 роки тому +1

    A strange corollary to this result - really, to the fact that there is one singular solution - is that no power of 2 besides 4 can be a leg of a Pythagorean triple where the other leg is a prime number.

  • @thoughtfuljanitor6627
    @thoughtfuljanitor6627 3 роки тому +3

    I'm not sure I understand what's being said around 8:41
    We factor 1 + 2^(n+1) into 3*N for some integer N
    Take the case n = 3 : then 2^(n+1) = 2^4 = 16
    However 16+1 cannot be factored as a multiple of 3
    So i'm not sure I understand why we can factor it that way

    • @zadsar3406
      @zadsar3406 3 роки тому +1

      Right. It only works for odd exponents, so for even n. You could do:
      2^(n + 1) = p^(2m) - 1 = (p^m - 1)(p^m + 1)
      Now, it is impossible that both p^m - 1 and p^m + 1 are divisible by 4. Therefore,
      p^m - 1 = 2
      This immediately gives you p = 3 and m = 1.

  • @tahirimathscienceonlinetea4273
    @tahirimathscienceonlinetea4273 3 роки тому +1

    Very nice Michael you're doing a great job.I love this kind of things which you can evaluate the radius of circle with insufficient information .keep going man 👍👍

  • @pierremarcotte6299
    @pierremarcotte6299 3 роки тому

    2:38 - Why is r odd?

  • @PunmasterSTP
    @PunmasterSTP 3 роки тому +1

    I got schooled watching the video, but even more so by reading the comments. I'm really glad that this much free educational material exists on UA-cam. Thank you to everyone here!

  • @iwonder2218
    @iwonder2218 3 роки тому +4

    This problem is very trivial due to the wording since it implies upfront that there is only one solution. 3-4-5 triangle comes to mind immediately where 4 is 2^2. If the problem said find all solutions then what you did was a solid method.

    •  3 роки тому +2

      Depends on how you interpret the wording. I always assume that you still have to prove that there's exactly one solution.

  • @Bazzzzz93
    @Bazzzzz93 3 роки тому +15

    8:10 wrong. This factorization works only for odd n+1

  • @rohitg1529
    @rohitg1529 3 роки тому

    The results is actually a trivial consequence of the Catalan conjecture (now a theorem) that the only solution of x^a - y^b = 1 for x,y,a,b being positive integers is 3^2 - 2^3 = 1
    Proving the Catalan conjecture is another matter though :P

  • @marsgal42
    @marsgal42 3 роки тому +2

    I found myself thinking of the usual hint that such problems have very few solutions, often just one. We have one solution by inspection. Is it unique?

    • @quickyummy8120
      @quickyummy8120 3 роки тому

      I found another amazing Olympiad problem here
      ua-cam.com/video/rnWJv_UxOJY/v-deo.html

  • @paulkohl9267
    @paulkohl9267 3 роки тому

    A satisfying ending.

  • @threstytorres4306
    @threstytorres4306 3 роки тому

    Question: For positive integer n, let S(n) denote the sum of the digits of n.
    E.g S(24) = 2 + 4 = 6
    S(92) = 9 + 2 = 11
    S(200) = 2 + 0 + 0 = 2
    Find the smallest positive integer satisfying, S(n) = S(n + 864) = 20
    Source: Aime 2015 I Problems/Problem 8

  • @fracaralho
    @fracaralho 3 роки тому +4

    The disdain for the idea that 0 is a natural number is so strong that he prefers to call the set of odd numbers 2Z + 1 instead of 2N + 1.

    • @PubicGore
      @PubicGore 3 роки тому

      Actually he doesn't have any disdain for the idea. In fact, he cares so little that he writes N often because he's just lazy, but has said many times that he doesn't care whether or not 0 is an element of N.

    • @fracaralho
      @fracaralho 3 роки тому

      @@PubicGore I've seen him say as much before, but I don't buy it.

  • @doctorb9264
    @doctorb9264 3 роки тому

    The old difference of squares trick !

  • @jimmykitty
    @jimmykitty 3 роки тому +11

    Perhaps one of the hardest geometry problems you're doing so far... 😍😍😍

    • @quickyummy8120
      @quickyummy8120 3 роки тому +1

      I found another amazing Olympiad problem here
      ua-cam.com/video/rnWJv_UxOJY/v-deo.html

    • @jimmykitty
      @jimmykitty 3 роки тому +1

      @@quickyummy8120 Thanking you, Boss 🙏 🙌 ♥

    • @TedHopp
      @TedHopp 3 роки тому +3

      It's not really a geometry problem. It's a number theory problem dressed up as geometry.

  • @DouglasZwick
    @DouglasZwick 3 роки тому

    13:22 "That Finnishes the solution to this problem"

  • @_simobr
    @_simobr 3 роки тому +2

    I immediately thought about the Pythagorean triple

    • @quickyummy8120
      @quickyummy8120 3 роки тому

      I found another amazing Olympiad problem here
      ua-cam.com/video/rnWJv_UxOJY/v-deo.html

  • @AriosJentu
    @AriosJentu 3 роки тому +1

    And that's a good place to like

    • @quickyummy8120
      @quickyummy8120 3 роки тому +1

      I found another amazing Olympiad problem here.
      ua-cam.com/video/rnWJv_UxOJY/v-deo.html

  • @ZipplyZane
    @ZipplyZane 3 роки тому

    Toward the end you started skipping a bit. I think you should have shown how you got x=1 and y=2, as well as actually plugging things in to get n=2.
    For the former, you can note that 2^(y-x) - 1 must be odd, and thus is equal to 1. So 2^x=2, and thus x=1. Plug that back in, and you get 2^(y-1) - 1 = 1, so 2^(y-1) = 2. Thus y-1=1 and y=2.
    Plugging in for the other you get that 3^2 - 1 = 2^(n+1) => 8 = 2^(n+1) => n+1=3 => n=2.

  • @peterburbery2341
    @peterburbery2341 3 роки тому

    3-4-5 triangle. This is the first Math Olympiad question I have solved myself!

  • @shifta7726
    @shifta7726 3 роки тому +1

    torille

  • @slawaxas
    @slawaxas 3 роки тому

    Wait this isnt a review of highly acclaimed album "Soundtracks for the Blind" by Swans

  • @alainbarnier1995
    @alainbarnier1995 3 роки тому +1

    Extraordinaire !!

    • @quickyummy8120
      @quickyummy8120 3 роки тому

      I found another amazing Olympiad problem here
      ua-cam.com/video/rnWJv_UxOJY/v-deo.html

  • @tomkerruish2982
    @tomkerruish2982 3 роки тому

    The requirement that r be odd is superfluous. If r were even, then both p^m and q^n would need to be even, which would require p=q=2, which is impossible.

    • @n8cantor
      @n8cantor 3 роки тому

      p and q could both be odd, but there are no solutions for that case either.

  • @szkoclaw
    @szkoclaw 3 роки тому +1

    Absolutely beautiful problem, where evennness and primeness of the number lets you discard all of the bullshit and just have fun.

    • @quickyummy8120
      @quickyummy8120 3 роки тому

      I found another amazing Olympiad problem here
      ua-cam.com/video/rnWJv_UxOJY/v-deo.html

  • @laurynastruskauskas6586
    @laurynastruskauskas6586 3 роки тому +2

    The intro is sick

    • @quickyummy8120
      @quickyummy8120 3 роки тому

      I found another amazing Olympiad problem here.
      ua-cam.com/video/rnWJv_UxOJY/v-deo.html

  • @eemelinissila1358
    @eemelinissila1358 3 роки тому +1

    Finland👍

  • @tychophotiou6962
    @tychophotiou6962 3 роки тому

    I thought to myself "it must be a pythagorean triplet", so could it be 3,4,5 5,12,13 7,24,25 8,15,17.... I checked whether 3,4,5 satisfied the conditions and it did.... Solved in 15 seconds!!!

  • @nareshmehndiratta
    @nareshmehndiratta 3 роки тому

    YOU MUST SIMPLIFY MATHS OF ALL PHYSICS

  • @GabeKorgood
    @GabeKorgood 3 роки тому +1

    If 3,4,5 is the only Pythagorean triple where both legs are powers of primes and the hypotenuse is odd, that should be enough to prove the problem without all the number theory

    • @JoGurk
      @JoGurk 3 роки тому +1

      Yeah and how do you prove that?!

    • @GabeKorgood
      @GabeKorgood 3 роки тому +2

      @@JoGurk some of the many known principles of Pythagorean triples are as follows:
      1. Exactly one of a, b is divisible by 2 (is even), but never c.
      2. Exactly one of a, b is divisible by 3, but never c.
      3. Exactly one of a, b is divisible by 4, but never c (because c is never even).
      4. Exactly one of a, b, c is divisible by 5.
      The 3, 4, 5 triple is the only set of numbers that satisfies these principles and the requirement that both legs be powers of primes.

    • @JoGurk
      @JoGurk 3 роки тому

      @@GabeKorgood alright, yeah. Sorry :D

  • @Jared7873
    @Jared7873 3 роки тому +1

    The radius is also prime. 😁

    • @quickyummy8120
      @quickyummy8120 3 роки тому

      I found another amazing Olympiad problem here
      ua-cam.com/video/rnWJv_UxOJY/v-deo.html

  • @minwithoutintroduction
    @minwithoutintroduction 3 роки тому

    واصل.قناة رائعة.

  • @nedaarsenijevic9479
    @nedaarsenijevic9479 3 роки тому

    Молим Вас прескочите тривијалне ствари у доказима а обратите пажњу на на идеју задатка. Поздрав Милан Ребић, Србија.

  • @kevin326520
    @kevin326520 3 роки тому

    I try to do this myself and when I reach the point at 7:20 I just make use of the Catalan conjecture since I dont know what to do even I know the answer lol

  • @rogerkearns8094
    @rogerkearns8094 3 роки тому +1

    To me it was obviously the 3,4,5 triangle from the start, but perhaps that's not the point.

    • @TJStellmach
      @TJStellmach 3 роки тому +2

      You still need to determine that that solution is unique.

    • @rogerkearns8094
      @rogerkearns8094 3 роки тому

      @@TJStellmach
      Fair enough, thanks. :)

  • @quantumloc8159
    @quantumloc8159 3 роки тому

    у отца пустая квартира, это значит не тждома

  • @guycomments
    @guycomments 3 роки тому +1

    Any Swans fans here just for the thumbnail?

    • @quickyummy8120
      @quickyummy8120 3 роки тому

      I found another amazing Olympiad problem here.
      ua-cam.com/video/rnWJv_UxOJY/v-deo.html

  • @caspermadlener4191
    @caspermadlener4191 3 роки тому

    WRONG!!! YOU MADE THE MISTAKE OF FACTORISING 2ⁿ+1!!! IT ONLY WORKS WHEN n IS ODD!!!

  • @quantumloc8159
    @quantumloc8159 3 роки тому

    на тебе р

  • @ΓιώργοςΚοτσάλης-σ1η

    Second