A practice problem from India

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 163

  • @goodplacetostop2973
    @goodplacetostop2973 3 роки тому +100

    0:01 In before comment section invaded by Indians 😂
    1:05 y = 0 ?
    6:11 Homework
    10:11 रुकने के लिए यह एक अच्छी जगह है

    • @metablaze3523
      @metablaze3523 3 роки тому +9

      Translation op👌🏻

    • @thatkindcoder7510
      @thatkindcoder7510 3 роки тому +4

      @SNEHANSH MAHARAJ Unfortunately, this is a trade secret that cannot be shared

    • @goodplacetostop2973
      @goodplacetostop2973 3 роки тому +30

      @SNEHANSH MAHARAJ I have written a truly marvelous explanation of that trick, which this margin is too narrow to contain

    • @a_llama
      @a_llama 3 роки тому +2

      bruh. invaded by indians?

    • @blazedinfernape886
      @blazedinfernape886 3 роки тому +1

      Perfect translation

  • @cosimodamianotavoletti3513
    @cosimodamianotavoletti3513 3 роки тому +45

    as an alternative method, after finding f(0)=1 substitute y=-x into the original equation: 1=f(x)f(-x)+2sin²x; f(x)f(-x)=cos(2x), setting x=π/4: f(π/4)=0 or f(-π/4)=0. Substituting the root into the original equation gives f(x±π/4)=-2sinx*sin(±π/4)=∓√2sinx; f(x)=∓√2sin(x∓π/4), so f(x)=-√2sin(x-π/4)=cosx-sinx or f(x)=√2sin(x+π/4)=cosx+sinx, both valid solutions.

    • @rudradevaroy1233
      @rudradevaroy1233 3 роки тому

      Yes bro I have also applied a differential way.

    • @rudradevaroy1233
      @rudradevaroy1233 3 роки тому

      In the equation we see that if x and y are inter changed then also the equation is still same

    • @rudradevaroy1233
      @rudradevaroy1233 3 роки тому

      So we can partially difference wrt x and put x=0 then we get f'(x)=f'(0)f(x)-2sinx

    • @rudradevaroy1233
      @rudradevaroy1233 3 роки тому

      Then solving this we get f(x)=e^ax (a^2-1)/(a^2+1) + 2/(a^2+1) * (asinx+cosx) . Then after playing with the original and unidifferentiated equation we will get f'(0) ( stands for a) =f(π/2). Then putting it in the solved equation we get a^2 =1. So f(x) = cosx ± sinx

    • @yatharthgupta6468
      @yatharthgupta6468 3 роки тому

      @@rudradevaroy1233 bro I did the same and arrive at the same ans
      But how did you find f'(0) to substitute for the constant?

  • @sohamghosh1865
    @sohamghosh1865 3 роки тому +2

    This can also be done by forming a differential equation , f'(x)=lim(h->0) (f(x+h)-f(x))/h or( f(x)(f(h)-1) - 2sinxsinh)/h ,since lim(h->0) (f(h)-1)/h = f'(0) and lim(h ->0) sinh/h=1 ,the equation reduces to f'(x)=f(x)f'(0)-2sinx, which can be now solved.

  • @Grizzly01
    @Grizzly01 3 роки тому +20

    2:46 love the look and pause after the pun. Classic. 😂

  • @bb2fiddler
    @bb2fiddler 3 роки тому +39

    Homework is proven by setting x=y=pi/2
    Very interesting problem! Thanks for the upload

    • @dicksonchang6647
      @dicksonchang6647 3 роки тому +6

      set x=0 for the fourth equation

    • @kairostimeYT
      @kairostimeYT 3 роки тому +1

      Same result; x = 0 if fourth eqn; x =pi/2 for the general equation. (Note that we shifted x by pi/2 in third equation to get the fourth which is what caused the value of x to be different)

  • @henrymarkson3758
    @henrymarkson3758 3 роки тому +161

    I am Indian JEE aspirant and this is an easy problem, in India we do these problems at age 6, blindfolded, one hand tied behind our back while executing a grade 5.13d rock climb.

  • @cyberman362
    @cyberman362 3 роки тому +2

    f(π/2) can be -1, 0 ,+1 . So there will be 3 solutions. For value 0, you need to put x=0 in final equation carrying f(π/2).

    • @darksecret965
      @darksecret965 2 місяці тому

      No?? Cus that leads to -1=-2 which is obviously a contradiction

  • @agamanbanerjee9048
    @agamanbanerjee9048 3 роки тому +7

    For the homework : Just substitute in x=pi/2 in that equation f(x+pi/2)=f(pi/2).f(x)-2sin x
    Btw really liked the solution. Can you do some more functional equation videos from R->R which involves limiting concepts?

  • @reneszeywerth8352
    @reneszeywerth8352 3 роки тому

    Hmmm. I had a different approach (which might lead to one solution not all possible solutions):
    - set y=0 -> f(0)=1
    - set y=-x -> f(0)=f(x)f(-x) +2 sin²x
    then follows
    f(x)f(-x)=1-2sin²x = cos² x- sin² x =(cos x + sin x) (cos x - sin x)
    So f(x)f(-x) = (cos x + sin x) (cos x - sin x) which gives cos(x)+sin(x) and cos(x)-sin(x) as possible solutions

    • @shalvagang951
      @shalvagang951 3 роки тому

      WHAT ABOUT THE F(-X) DO YOU KNOW THE VALUE WE HAVE TO GET IT ONLY FOR F(X)

  • @edwardlulofs444
    @edwardlulofs444 3 роки тому +1

    I haven't had a lot of experience with functional equation problems. I found this video very helpful.

  • @Reliquancy
    @Reliquancy 3 роки тому +2

    Functional equations are pretty cool. They sort of make think they’re like differential eq’s without the derivatives. 0th order differential eqs maybe, idk lol.

  • @omrizemer6323
    @omrizemer6323 3 роки тому +1

    Another method is to expand f(x+y+z) in two ways.

  • @ashwinraj2033
    @ashwinraj2033 3 роки тому +3

    Great Video!

  • @_judge_me_not
    @_judge_me_not 3 роки тому +7

    10:11 এটি থামার জন্য ভালো জায়গা 😁😁
    You summon us Indians by making such videos

  • @vishvajeetkumarbatule5
    @vishvajeetkumarbatule5 3 роки тому +2

    Great explanation👍

  • @ThainaYu
    @ThainaYu 3 роки тому +26

    Sound is more and more quiet for every clip

  • @thedarkknight1865
    @thedarkknight1865 3 роки тому

    Brilliantly framed question. Thanks for this Question.

  • @mattwoodphd
    @mattwoodphd 3 роки тому +4

    Nice to see one of these where the answer isn't f(x)=1 or 0

    • @shalvagang951
      @shalvagang951 3 роки тому

      MY ANSWER IS ALSO COMING 1 AND HENCE IT IS REAL NUMBER SO IT CAN BE

  • @tenayefujaga6341
    @tenayefujaga6341 3 роки тому

    I think we must rewrite π as π/2+π/2 then plug it in f(x+y): f(π/2+π/2)

  • @abhijeetm29
    @abhijeetm29 3 роки тому +7

    Lmao!, looks like India has discovered Michael Penn. Now that's indeed a Good place to stop!

  • @ImaginaryMdA
    @ImaginaryMdA 3 роки тому

    This was neat!

  • @Baruch785
    @Baruch785 3 роки тому +8

    Well you proved that cos-sin and cos+sin are the only two possible solutions, you didn't prove these are actual solutions

    • @ImaginaryMdA
      @ImaginaryMdA 3 роки тому

      True. It's probably homework. XD

  • @ashwinraj2033
    @ashwinraj2033 3 роки тому +4

    "That Is A Good Place To Stop".

  • @Xoretre
    @Xoretre 3 роки тому +1

    0=y=1 so 0=1
    QED, I successfully managed to break maths!
    At long last!

  • @Noam_.Menashe
    @Noam_.Menashe Рік тому

    I solved this without substituting any number. Was harder than it was supposed to, but also more satisfying.

  • @OscarCunningham
    @OscarCunningham 3 роки тому +1

    Liking the intro music!

  • @peterquartararo3249
    @peterquartararo3249 3 роки тому

    fascinating.

  • @youcefkenane8973
    @youcefkenane8973 3 роки тому +1

    At 5:59 plug x=0 in the last equation to get the homework

    • @Sush
      @Sush 3 роки тому +1

      Nice!

    • @shalvagang951
      @shalvagang951 3 роки тому

      @@Sush ARE YOU MAD HOW IT CAN BE IF WE HAVE TO PUT TWO VALUES OF X AND Y AND THAT WILL PIE /2

    • @Sush
      @Sush 3 роки тому

      @@shalvagang951 Uh... just take the fact that:
      f(x + y) = f(x)f(y) - 2sin(x)sin(y)
      Now for x = y = π/2 you get
      f(π) = f(π/2)f(π/2) - 2sin(π/2)sin(π/2)
      Which means
      f(π) = [f(π/2)]² - 2
      as required.

    • @Sush
      @Sush 3 роки тому

      The thing is the sir made a middle step of saying well if
      f(x + y) = f(x)f(y) - 2sin(x)sin(y)
      Then
      f([x + π/2] + [π/2]) =
      f(x + π/2)f(π/2) - 2sin(x + π/2)sin(π/2)
      This must be true FOR ALL X, since the function f mas this property. It must then work for x = 0. That is
      f(π/2 + π/2) = f(π/2)f(π/2) - 2sin(π/2)sin(π/2)
      Which concludes with the final step I put on my last comment.
      Now go relax a little.

    • @shalvagang951
      @shalvagang951 3 роки тому

      You don’t understand what i said I said for that homework Micheal give it should be pie by 2 for both values Now you realx ok bro

  • @АзиретАкматбеков-й1м

    I think that you should check your answer

  • @elardenbergsousa3836
    @elardenbergsousa3836 3 роки тому

    I used y = 0, then y = -x
    from the second identity, we have
    f(0) = f(x)f(-x) - 2(sinx)^2 -> f(x)f(-x) = 1 -2(sinx)^2
    Then i factored it. First i tried 1 +- sqrt(2)sinx but it didn't work
    Then i remembered pythagoeran theorem and it turned f(x)f(-x) = (cosx + sinx)(cosx - sinx)
    Well it works and we have f(x) cosx +- sinx, but i don't think it ensures it is the only solutions. Am I missing something?
    Thank You

  • @anshumanagrawal346
    @anshumanagrawal346 3 роки тому +1

    Can you be sure that both the solutions will work? (I don't have a lot of experience with functional equations and it's probably obvious, but if anyone cares to explain, I appreciate it)

    • @tanaysodha2229
      @tanaysodha2229 3 роки тому

      Veryfying the Solutions:
      put x → x+y in f(x) = sinx + cos x, we get:
      f(x+y) = sin(x+y) + cos (x+y); expanding using trigonometric formulae we get:
      f(x+y) = sinxcosy + cosxsiny + cosxcosy - sinxsiny; adding and subtracting sinxsiny we get:
      f(x+y) = sinxcosy + cosxsiny + cosxcosy + sinxsiny - 2sinxsiny; simplifying further:
      f(x+y) = sinxcosy + cosxcosy + cosxsiny + sinxsiny - 2sinxsiny;
      f(x+y) = cosy(sinx + cosx) + siny(sinx+cosx) - 2sinxsiny;
      f(x+y) = (sinx + cosx)(siny + cosy) - 2sinxsiny;
      f(x+y) = f(x) f(y) - 2sinxsiny. Hence verified.
      You can do a similar analysis for f(x) = sinx - cosx too!

    • @anshumanagrawal346
      @anshumanagrawal346 3 роки тому +1

      @@tanaysodha2229Yeah, I know you can verify it, but I'm curious about is how he was sure the steps he had done were enough to conclude the solutions worked without verification

    • @vrj97
      @vrj97 3 роки тому +1

      @@anshumanagrawal346 Yeah I don't think so, I think technically he would've had to verify it as well.

  • @shengliu4596
    @shengliu4596 3 роки тому

    This problem can be solved by using ordinary differential equation method. First, we get f(0) = 1 and f'(0) = A, then we do a Taylor expansion around x, that is f(x+dx) = f(x)*[1+f'(0)*dx] - 2*sin(x)*dx. Now, we need to solve this f'(x) = A*f(x) - 2*sin(x). After we get the solution, we can use f(x+pi) = f(x)*f(pi) to determine what A is (turns out A^2 = 1)

  • @internetbad3575
    @internetbad3575 3 роки тому

    There's a nice way of doing this with some calculus and differential equations, but it's not entirely rigorous as I am not that well-versed in calc and diff. eq. Please enlighten me on how to patch this up:
    As we've seen, for f(0) = 0 the solution is f(x) = 0. The only other choice is f(1) = 1.
    Remember that f'(x) = lim_h->0 [f(x+h) - f(x)] / h.
    So: f'(x) = lim_h->0 [f(x)f(h) - 2sinxsinh - f(x)] / h = lim_h->0 f(x) * (f(h) - 1) / h - 2sinx * sinh/h
    f(x) & sinx are constant, and lim_h->0 of sinh/h = 1, and lim_h->0 (f(h) - 1) / h = A, where A is some constant. This is where we assume for whatever reason that f(x) is differentiable, so that the limit may exist, and as a consequence lim_h->0 f(h) = 1 (hence why I don't entirely like this method. Maybe it can be proven that f(x) is differentiable for all x.)
    We get the differential equation: f'(x) = (A - 1)f(x) - 2sinx, the solution to which is pretty disgusting: f(x) = 2[(A - 1)sinx + cosx] / (A^2 - 2A + 2) + Be^(Ax - x).
    Note that if we set A = 0, B = 0 (again, no justification that no other solutions exist, I suck), we get f(x) = cosx - sinx, and if we set A = 2, B = 0, we get cosx + sinx as a solution.

    • @yatharthgupta6468
      @yatharthgupta6468 3 роки тому

      Did using same method
      Actually the answer is
      (1/c^2+1)(2c cosx -2sincx + (c^2-1)(c)e^cx) where c is f'(0)
      Is there any way to find f'(0)?

  • @Mohamed.Soltan1991
    @Mohamed.Soltan1991 3 роки тому

    Wonderful 💖💖💖

  • @srinjoyganguly3650
    @srinjoyganguly3650 3 роки тому

    Will use of calculus make the problem easier to solve ?

  • @srijanbhowmick9570
    @srijanbhowmick9570 3 роки тому +1

    No way did I just solve a functional equation on my own with ABSOLUTELY NO HINTS ????????!!!!!!

  • @MrWarlls
    @MrWarlls 3 роки тому +4

    For the first calculation, I think you write a mistake. y=0 and not y=1.

    • @sashimanu
      @sashimanu 3 роки тому +4

      That’s can be thought of a degenerate case of a very thin zero with infinite eccentricity 😅

  • @alainbarnier1995
    @alainbarnier1995 3 роки тому

    Like it !

  • @noumanegaou3227
    @noumanegaou3227 3 роки тому

    There is a countable and compact set in same time?

  • @barisdemir7896
    @barisdemir7896 3 роки тому

    this question was best ... I like more solutions

  • @hashimabbas3977
    @hashimabbas3977 3 роки тому

    Hi.
    From 🇮🇳

  • @wellingtonbalmant5965
    @wellingtonbalmant5965 3 роки тому

    Put zero on x+pi equation.

  • @mcwulf25
    @mcwulf25 3 роки тому

    Good one

  • @TedHopp
    @TedHopp 3 роки тому

    So in the end, you solved the homework problem for us! 🎉

  • @matteoanoffo1447
    @matteoanoffo1447 3 роки тому +1

    With y=-x i found f(x)=√cos(2x), it's possible?

    • @matteoanoffo1447
      @matteoanoffo1447 3 роки тому

      I notice that it's R→R so it's not a valido solution

    • @olau5478
      @olau5478 3 роки тому

      @@matteoanoffo1447 why is it not valid? because cos(2x) can be < 0?

    • @matteoanoffo1447
      @matteoanoffo1447 3 роки тому +1

      @@olau5478 yes because the Dominio Is R and √cos(2x) doesn't exist for Every number

    • @thedarkknight1865
      @thedarkknight1865 3 роки тому

      f(x)+f(-x)+2sin² x=1
      How can you get that function, when you don't know the value of f(-x)

    • @matteoanoffo1447
      @matteoanoffo1447 3 роки тому

      @@thedarkknight1865 1-sin²x=cos(2x) and since cos Is an even function f(-x)=f(x), so f(x)f(-x)=f²(x)=cos(2x)

  • @rikthecuber
    @rikthecuber 3 роки тому

    Hw solution x=y=pi/2

  • @har011
    @har011 3 роки тому

    317th viewer from India
    And very old subscriber 😁

  • @fonzi102
    @fonzi102 3 роки тому

    isn't this a solution?
    2cos(x+y)=2cosxcosy-2sinxsiny

  • @heliocentric1756
    @heliocentric1756 3 роки тому

    y=1 (zero)
    And that's a good place to stop.

  • @abhigyakumar3705
    @abhigyakumar3705 3 роки тому

    Great vid

  • @yatharthgupta6468
    @yatharthgupta6468 3 роки тому +1

    Actually the answer is coming out to be
    (1/c^2+1)(2c cosx -2sincx + (c^2-1)(c)e^cx) where c is f'(0)
    Is there any way to find f'(0)?

  • @Inndjkaawed2922
    @Inndjkaawed2922 3 роки тому

    So, I did this problem and my doubt was the coefficient of cosx and sinx.

  • @Harshit_Pro
    @Harshit_Pro 3 роки тому

    1:06 you wrote 1 and said 0

  • @yoav613
    @yoav613 3 роки тому

    I found the solution by guessing but this solution is great!!

  • @ayoubabid8783
    @ayoubabid8783 3 роки тому +1

    This is an easy function equation problem, i can solve it just by doing some classic substitution

  • @StarsManny
    @StarsManny 3 роки тому

    Careful with the music, Michael. Once you allow the dreaded music to invade your videos it tends to spread out and dominate, like the red weed in war of the worlds.

  • @abdallahal-dalleh6453
    @abdallahal-dalleh6453 3 роки тому +1

    The homework can be done by setting x = y

    • @Ishi-15f
      @Ishi-15f 3 роки тому +2

      Or putting x=y=π/2

  • @davaariantara3704
    @davaariantara3704 3 роки тому

    nice video, but mainly though, nice camera heh

  • @stephensu4371
    @stephensu4371 3 роки тому +1

    y is 0,cool

  • @fedorlozben6344
    @fedorlozben6344 3 роки тому

    This
    Is
    Impossible!

  • @kodirovsshik
    @kodirovsshik 3 роки тому

    Nice intro

  • @rrr1304
    @rrr1304 3 роки тому

    Hii 🙏🏻🙏🏻🙏🏻

  • @flabbypenguin
    @flabbypenguin 3 роки тому

    Nice thumbnail .

  • @Thy_panda_king
    @Thy_panda_king 3 роки тому +2

    come on fellow Indians... let's invade here

    • @thedarkknight1865
      @thedarkknight1865 3 роки тому

      Kuch dimaag se paidal ho kya
      Har jagah bachabazi Achi nhi lgti

    • @ilickcatnip
      @ilickcatnip 3 роки тому

      @@thedarkknight1865 dude :/

    • @Thy_panda_king
      @Thy_panda_king 3 роки тому

      @@thedarkknight1865 ok uncle, jao aap apne bachon ko sambhalo..... ye sab youtube pe majak aapki bas ki nhi

    • @thedarkknight1865
      @thedarkknight1865 3 роки тому

      @@Thy_panda_king ye har jgah apni chaap mat chora kro
      Sabhya log ki tarah seekho aur chalte bano, tum log majak bna dete ho mere desh ka

    • @Thy_panda_king
      @Thy_panda_king 3 роки тому

      @@thedarkknight1865 aapka dimag kitna viksit hai wo iss line se dikh gaya..... bhai desh hame bhi pyara hai... lekin me apne ghar ke 4 diwaar se bahar ka life janta hu.. choro kya bole abb

  • @harrymattah418
    @harrymattah418 3 роки тому

    Vocal fry at its best. Videos may be as excellent without this US vocal habit.

  • @divyansh_19
    @divyansh_19 3 роки тому +2

    IndianJEE aspirants!! Assemble!!

  • @crazy4hitman755
    @crazy4hitman755 3 роки тому

    I can’t believe I solved a functional equation

  • @mithutamang3888
    @mithutamang3888 3 роки тому +1

    LIKE A VIKRAM BATRA RIP 😭😭😭!!! 😁😁👍👍

    • @Miyamoto_345
      @Miyamoto_345 3 роки тому +5

      I can understand but it is not really relevant in this math channel

    • @ilickcatnip
      @ilickcatnip 3 роки тому +1

      @@Miyamoto_345 true

  • @yashgupta7995
    @yashgupta7995 3 роки тому +2

    What with the flag?? It's a damn math problem.

    • @sharathchandra1029
      @sharathchandra1029 3 роки тому +1

      It's a marketing strategy i think most of his viewers are indian and we watch anything that mentions indian in a video

    • @ilickcatnip
      @ilickcatnip 3 роки тому +4

      Well he had the Mexico flag in one video and the Canadian Maple leaf in another. What's the problem? A nation's flag is meant to represent it 🤷‍♂️
      Stop charging fellow UA-camrs with stupid arguments.

    • @blackmuskveetandoor2487
      @blackmuskveetandoor2487 3 роки тому +1

      @@ilickcatnip true

    • @juyifan7933
      @juyifan7933 3 роки тому +1

      Thats the source of the problem. Whenever he does a math contest problem he uses the flag of the country where it came from.
      People are butthurt for everything nowadays. Seriously, complaining about a flag!

  • @AMIR6DEC1986
    @AMIR6DEC1986 3 роки тому

    sound quality,bad.video quality,bad.
    bye.