DESTROYING an absolute BEAST of an integral: solution using Feynman's trick

Поділитися
Вставка
  • Опубліковано 21 січ 2025

КОМЕНТАРІ • 26

  • @aryaghahremani9304
    @aryaghahremani9304 Рік тому +11

    best convergence test for integrals:
    we can switch the integration and differentiation operations because the integral converges, we knoe that because if it didnt then we wouldnt solve the integral in the first place

    • @amritlohia8240
      @amritlohia8240 10 місяців тому

      Sadly that doesn't work ... the integral converging is nowhere near sufficient. The usual theorem you use here is the dominated convergence theorem, which requires the integrand to be uniformly bounded (independent of the parameter, e.g. alpha in this case) by a function whose integral converges.

  • @lebesguegilmar1
    @lebesguegilmar1 5 місяців тому

    Amazing Intregral. Congratulaions and thanks by solution.

  • @AntAnkh
    @AntAnkh Рік тому +4

    Where do you find your integrals? Is there a textbook or set of textbooks you use?

  • @ゆしの
    @ゆしの 11 місяців тому +1

    when there is an arctan function in the numerator, fubini's theorem often works well.

  • @Arkanda003
    @Arkanda003 Рік тому +2

    Great video! Amazing as always.

  • @shanmugasundaram9688
    @shanmugasundaram9688 Рік тому +2

    This is an easy Ahmed integral.The real monster Ahmed integral has bound s from 0 to 1.The answer is (5/96)(pi)^2.

  • @MrWael1970
    @MrWael1970 Рік тому

    Thank you for your featured effort.

  • @Calcufast001
    @Calcufast001 Рік тому +41

    Bro. If you don't write a book on integral. The gods of math won't be happy with you. 😂

    • @daddy_myers
      @daddy_myers Рік тому +3

      It's mandatory at this point.

  • @minhnguyen1338
    @minhnguyen1338 Рік тому +1

    You can look the Cotex's integral up

  • @spiderjerusalem4009
    @spiderjerusalem4009 Рік тому +3

    oh wow i'm glad this is easier than ahmed's 😂

  • @richard_larrain
    @richard_larrain Рік тому

    what program do you use for writing all of these solutions?

  • @holyshit922
    @holyshit922 Рік тому +1

    I calculated it with double integral
    Int(sqrt(x^2+2)/(1+y^2(x^2+2)),y=0..1) = arctan(sqrt(x^2+2))
    Int(arctan(sqrt(x^2+2))/((x^2+1)*sqrt(x^2+2)),x=0..infinity)=
    Int(Int(sqrt(x^2+2)/(1+y^2(x^2+2)),y=0..1)*1/((x^2+1)*sqrt(x^2+2)),x=0..infinity)=
    Int(Int(sqrt(x^2+2)/(1+y^2(x^2+2)) * 1/(((x^2+1)*sqrt(x^2+2))) ,y=0..1),x=0..infinity)=
    Int(Int(1/((x^2+1)*(1+y^2(x^2+2))),y=0..1),x=0..infinity)=
    Int(Int(1/((x^2+1)*(1+y^2(x^2+2))),x=0..infinity),y=0..1)
    And it seems to be equivalent to the Leibniz rule

  • @AB-nu5we
    @AB-nu5we Рік тому +3

    Very cool result. As a former instructor myself, I'd suggest that you include a link to the specific 'B roll' where you calculated those residues. I see you have link to the complex analysis lectures, but for beginners, the direct link can overcome a lot of frustration when you're not sure what you're looking at.

    • @amritlohia8240
      @amritlohia8240 10 місяців тому

      The only point where he mentioned residues was for int_{0}^{infty}dx/(x^2+1), but of course you don't actually need complex analysis for that - it's just yet another arctan integral, like all the rest in the video!

  • @manstuckinabox3679
    @manstuckinabox3679 Рік тому +2

    Ah, yet another victim to a classic-like integral, It's nice to see that we're starting to observe integral problems in the same manner.

  • @jhulioux
    @jhulioux Рік тому

    I don't understand why your limits of integration were from 0 to 1 (at the moment you integrate to find the function as it though a simple ODE)… despite the limits of integration of the first integral were from 0 to infinity. That is the only thing by which I can't sleep because of my overthinking lol

    • @maths_505
      @maths_505  Рік тому +1

      Hi
      Fellow overthinker here 😂
      I(1) was my target case
      I(0) was my initial value
      So that's why I evaluated the integral w.r.t alpha from 0 to 1. The original integral was an integral w.r.t x from 0 to ♾️

    • @maths_505
      @maths_505  Рік тому +1

      And that's pretty much what Feynman's trick amounts to: turning an integral into an ODE

    • @jhulioux
      @jhulioux Рік тому +1

      @@maths_505Got it. Tsm. Btw, I love your videos about crazy integrals!

  • @illumexhisoka6181
    @illumexhisoka6181 Рік тому

    Why is this integral famous?

  • @arkadelik
    @arkadelik 2 місяці тому

    mein könig

  • @yoav613
    @yoav613 Рік тому

    Noice

  • @ELKCreativist
    @ELKCreativist Рік тому

    :D