Is this integral too complex for Feynman's technique???

Поділитися
Вставка
  • Опубліковано 28 лис 2024

КОМЕНТАРІ • 42

  • @KaRim-fc1sd
    @KaRim-fc1sd Рік тому +17

    Bro i noticed u reaaaaallly love Feynman's technique

    • @maths_505
      @maths_505  8 місяців тому +2

      @SayedHamidFatimi 😂😂😂

  • @mcalkis5771
    @mcalkis5771 Рік тому +8

    Feynman's technique is literally never boring to watch.

  • @kaanetsu1623
    @kaanetsu1623 Рік тому +8

    Same integral was given in my class under feynmann tech just instead of cos^2(x) there was x^2. So no complex was needed and its not in our syllabus also .
    BTW the golden ratio at the end was too goood!! 🤯🤯

  • @manstuckinabox3679
    @manstuckinabox3679 Рік тому +2

    2:39 This integral form has become something that has piqued my curiosity for a while now. I remember in last time's case, that is when alfa was equal to zero, I wondered if invoking summation of 1/1+sin^4(x) (cos(x) as well by king's property) would work, based of the equation we can prove using contour integration or the beta function.
    However, it seems we relied on the same method as last time, which still is mind-blowing to me!
    5:01 oh yeah LOL! multi-valued functions go brr!
    Amazing vid as always my man! keep pumping them up!

  • @gesucristo0
    @gesucristo0 Рік тому +10

    Could you do something about Maxwell’s equations? Both integral and differential form

  • @polpotify
    @polpotify 10 місяців тому

    I think this is the first time I have heard swearing on this channel, and the answer was so satisfying and beautiful ❤

  • @krisbrandenberger544
    @krisbrandenberger544 Рік тому +1

    @ 3:30 The cos x terms in the denominators should both be squared.

  • @TheArtOfBeingANerd
    @TheArtOfBeingANerd Рік тому +1

    I love how you used phi in the process, and then the golden ratio popped out

    • @maths_505
      @maths_505  Рік тому +4

      I avoid θ at all costs 😂

    • @robertsandy3794
      @robertsandy3794 Рік тому

      Only issue for me was that you used phi as an angle and then used phi as golden ratio. Confused me for a second or 2

  • @MrWael1970
    @MrWael1970 Рік тому

    Very interesting integral. Thank you for your smart plan to solve this type of integrals.

  • @NikitaMelik-Marutov
    @NikitaMelik-Marutov Рік тому

    Hi, incredible youtuber!! Could you tell me what blackboard are you using in your videos?

  • @alessandropacco2958
    @alessandropacco2958 Рік тому

    Hey! Nice videos, I was wondering if you wanted to do also some cool probability stuff at some point. I guess there are a lot of really nice problems and tricks to do there too.

  • @grumpyparsnip
    @grumpyparsnip 6 місяців тому

    At 3:28, you are missing squares on the cosines in the partial fraction decomposition. This confused the heck out of me, so just a heads up.

    • @maths_505
      @maths_505  6 місяців тому

      Oh sorry about that mate. My bad.

  • @jieyuenlee1758
    @jieyuenlee1758 9 місяців тому

    14:47:me memorise that
    (sqrt5-1)/2=1/y (y=golfen ratio)

  • @PopPhyzzle
    @PopPhyzzle Рік тому

    Sweet maths dude
    I'm curious what app do you use for your videos? I wanna take my notes in that.

    • @maths_505
      @maths_505  Рік тому +1

      It's Samsung notes. I use an S6 tab.

    • @PopPhyzzle
      @PopPhyzzle Рік тому

      @@maths_505 Thanks man!

  • @Mayk_thegoat
    @Mayk_thegoat 9 місяців тому

    sir i got a nice way to evaluate this monster , it took me 2 min.

  • @biscuit_6081
    @biscuit_6081 Рік тому

    why did you add +C when it's a definite integral? does that have something to do eith fynman's technique?

    • @amritlohia8240
      @amritlohia8240 9 місяців тому

      He calculated the *indefinite* integral of I'(alpha) - this is separate from the fact that I(alpha) is defined as a definite integral.

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому

    I=π/√2(√(√5-1))

  • @aryaghahremani9304
    @aryaghahremani9304 Рік тому

    why is it necessary to take the limit for the tangent structure? isnt arctan infinity just pi/2

    • @maths_505
      @maths_505  Рік тому +1

      1. Those are "limits" of integration.
      2. Infinity isn't a number.

    • @aryaghahremani9304
      @aryaghahremani9304 Рік тому

      @@maths_505 thanks but i meant why turn arctan into the log form when the variable is just being divided by a constant

    • @maths_505
      @maths_505  Рік тому +1

      @@aryaghahremani9304 its a good teaching practice to show things like how such results farrt forward into the complex realm.

  • @trelosyiaellinika
    @trelosyiaellinika 2 місяці тому

    Elegant!

  • @joelchristophr3741
    @joelchristophr3741 Рік тому

    brother where do you get these integrals???? you even create them???

    • @maths_505
      @maths_505  Рік тому +2

      This one's from Micheal Penn and Rizzy Math (Instagram)

    • @maths_505
      @maths_505  Рік тому +2

      The one I'm about to upload is one I made up.

  • @amitadeshpande8474
    @amitadeshpande8474 Рік тому

    This integral is complex enough for Feynman's technique

  • @pandavroomvroom
    @pandavroomvroom Рік тому

    all in all, very cool!

  • @shivanshnigam4015
    @shivanshnigam4015 Рік тому

    Amaze Balls

  • @Hobbitangle
    @Hobbitangle 8 місяців тому

    Terrible solution. I mean the calculation of
    (√(1+2i)-√(1-2i))/i
    Definitely the result should be the real number, so squaring the expression , then simplifying it and taking the square root gives us the result
    (1+2i+1-2i-2√(1+2i)•√(1-2i)))/i²=
    -2+2√5= 4•(√5-1)/2=4•2/(√5+1)=4/phi
    Where phi is the golden ratio
    The answer is π/2•√(4/phi)=
    =π/√phi