e (Euler's Number) - Numberphile

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 5 тис.

  • @ganges6661
    @ganges6661 7 років тому +1429

    Please don't ever stop making maths videos. I truly appreciate your explanation (history and reasoning). Love your work and truly admire what you are doing.

    • @arthurthekyogre9155
      @arthurthekyogre9155 4 роки тому +6

      If they stop making math videos they would stop making videos, the channel is numberphile

    • @granvillebarraclough8846
      @granvillebarraclough8846 4 роки тому +3

      BA in Maths I presume.

    • @slowpoke8641
      @slowpoke8641 3 роки тому +1

      eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

    • @albertobernal2537
      @albertobernal2537 2 роки тому +1

      @@granvillebarraclough8846 Why though? because at day 1 MA he'd be bound to be sick of it already or have moved on to another area of studies altogether? hehehe :D
      Sorry, I had to reply, even 2 years late :P
      I love the videos as well, gotta say.

  • @HalcyonSerenade
    @HalcyonSerenade 7 років тому +4573

    "Don't put that in the video"
    _Puts that in the video_

    • @anonyKinetic
      @anonyKinetic 6 років тому +116

      they had ONE job

    • @LUBAProduktion
      @LUBAProduktion 6 років тому +100

      absolute M A D L A D

    • @Peter_1986
      @Peter_1986 6 років тому +47

      +HalcyonSerenade
      Kinda reminds me of that scene in Monty Python And The Holy Grail, where King Arthur got annoyed by a scene and then ran in front of the camera and screamed "Cut that out! Cut that out!".

    • @elemenopi9239
      @elemenopi9239 6 років тому +16

      r/madlads

    • @aayushkashyap1365
      @aayushkashyap1365 6 років тому +9

      Savage

  • @mattchandler2387
    @mattchandler2387 6 років тому +294

    If you graph x^y=y^x, you get two simultaneous graphs. One is x=y, and the other is some variation of y=1/x. They cross at the co-ordinate (e,e)

    • @fantasticalthoughts
      @fantasticalthoughts Рік тому +1

      Nice

    • @adamkotter6174
      @adamkotter6174 Рік тому +10

      I tried to eyeball what the y=1/x -like function might be, and the closest I can seem to get is y=((e-1)^2)/(x-1) + 1. It matches the asymptotic behavior of x^y = y^x and passes through (e,e), but it doesn't perfectly match. The true function has something to do with the fact that ln(x)/x has two different x values that give the same y value for any positive y less than about 0.368, but for the life of me I can't figure it out.

    • @davidiv4915
      @davidiv4915 9 місяців тому +4

      @@adamkotter6174similarly the graphs a^x and loga(x) intersect at coordinates (e,e) when a = e^1/e
      not really sure why that is but it’s neat.

    • @placeholder325
      @placeholder325 8 місяців тому +2

      @@adamkotter6174 that "about 0.368" number is actually 1/e. I don't know why though.

    • @placeholder325
      @placeholder325 8 місяців тому +1

      @@davidiv4915 it's pretty satisfying if you sub in x=e to both equations.
      a^x = (e^(1/e))^e = e^(e^e) = e^1 = e
      loga(x) = log(e^(1/e))(e) = e (because of the line above)

  • @Gunbudder
    @Gunbudder Рік тому +1226

    Math is just all about who can pronounce Euler the most correct

    • @someonespadre
      @someonespadre Рік тому +70

      The football team at one of my hometown high schools was the “Oilers.”

    • @skillybiskuit12
      @skillybiskuit12 Рік тому +47

      I have a tattoo of Euler’s identity and just now found out it’s pronounced “Oy-ler”

    • @zyronebiglang-awa6871
      @zyronebiglang-awa6871 Рік тому +11

      the edmonton hockey team is called the oilers (don't even ask me about hockey alr)

    • @PMT17
      @PMT17 Рік тому +38

      Germans: You dare challenge us mortals

    • @ninjafish3755
      @ninjafish3755 Рік тому +2

      @@PMT17 fax

  • @YTSunnys
    @YTSunnys 7 років тому +888

    Main Theme - e

  • @MohaMMaDiN55
    @MohaMMaDiN55 6 років тому +1474

    I remembered when I first watched this video. It was like 2 years ago and I barely understand what’s going on. Now I watched it again after the previous 2 years and I found myself turned super focused. I understood everything
    Thanks for your explanation

    • @ChiefVS
      @ChiefVS 5 років тому +70

      I can relate... I was 13 when I watched it... Now I'm 16 and I understand this lol. This is what I study loool

    • @MrInsideEye
      @MrInsideEye 5 років тому +167

      One might say you had continuous interest

    • @kuj2887
      @kuj2887 5 років тому +29

      @@MrInsideEye
      Underrated comment.

    • @mariomario-ih6mn
      @mariomario-ih6mn 4 роки тому +7

      You said the same thing on the Cardano's formula video

    • @keithwilson6060
      @keithwilson6060 4 роки тому +21

      I’ve recommended Numberphile to various young students having trouble with maths. It is an excellent motivator for cultivating an interest in maths.

  • @stezenast5878
    @stezenast5878 5 років тому +822

    e^(i*pi) = -1 is very useful in electrical engineering phasor notation and complex impedance. It essentially allows equations that would need calculus to solve to be easily solved algebraically.

    • @The_Aleph_Null
      @The_Aleph_Null 5 років тому +37

      The complete Euler formula tho for every angle, not just the Euler identity everyone knows

    • @GodzillaGoesGaga
      @GodzillaGoesGaga 5 років тому +25

      You can thank Laplace and Fourier for that too!

    • @poisonpotato1
      @poisonpotato1 5 років тому +10

      It’s also used in Controls engineering, and vibrations

    • @Jeff_Lichtman
      @Jeff_Lichtman 4 роки тому +9

      Also useful in digital signal processing.

    • @spyrex3988
      @spyrex3988 4 роки тому +9

      It's also used in computer science for writing various algorithms and making them efficient wrt complexity

  • @lunactiathemoth
    @lunactiathemoth 8 місяців тому +65

    i love siivagunner

    • @StudioLNL
      @StudioLNL 2 місяці тому

      Equal-Chan Moment

  • @Albeit_Jordan
    @Albeit_Jordan 5 років тому +3801

    Teacher: In what year did the defeat of the Spanish Armada occur?
    Me: Euler or Gauss.

    • @hammerth1421
      @hammerth1421 4 роки тому +191

      e's decimal expansion is random, so the likelyhood of finding a four integer sequence in it that coincides with the year of the attack by the Spanish Armada is equal to 1.

    • @chanderule605
      @chanderule605 4 роки тому +71

      @@hammerth1421 WRONG
      There's no proof of e being a normal number
      So, unless you prove that or find the year itself, you can't say that

    • @hammerth1421
      @hammerth1421 4 роки тому +77

      @@chanderule605 Even though e is not a normal number, it's digits are still random. While you can't find any sequence of any length in it, you are pretty much guaranteed to find every four digit sequence, also the year of the Spanish Armada.

    • @chanderule605
      @chanderule605 4 роки тому +33

      @@hammerth1421 There's no proof of that other than "it's kinda likely"
      And I dont think it's proven to be random either

    • @AnHebrewChild
      @AnHebrewChild 4 роки тому +8

      HammerTh its digits are not random. Now I'll have to wait and see if you reply with what I expect you'll reply with.

  • @AcmeRacing
    @AcmeRacing Рік тому +176

    My Business Calculus professor at the University of Southern Maine was a big Euler fan. All of the classrooms Mainville used had a bit of graffiti; the Euler number, its square and its cube (all written out to five or six places) were written above the blackboard in magic marker. Since we used natural logs in the class, it was like an authorized cheat sheet during exams.

    • @trixylizard6970
      @trixylizard6970 Рік тому +6

      "Everybody knows this anyway. If you don't, now you do."

    • @mshrm.
      @mshrm. Рік тому +2

      not knowing the values of it to a few decimal points is crazy anyway😭 or just using a calculator but i presume it was a non calculator paper

  • @Zahlenteufel1
    @Zahlenteufel1 8 років тому +1458

    1:29 Said no-one ever...

    • @GameNOWRoom
      @GameNOWRoom 8 років тому +12

      xD

    • @NickBLeaveIt
      @NickBLeaveIt 8 років тому +111

      Zahlenteufel1 I mean, maybe in sarcasm...

    • @TheYvesL
      @TheYvesL 7 років тому +26

      That was hillarious, I'm dying lol

    • @alvarogoogle
      @alvarogoogle 7 років тому +35

      Republican$ and Democrat$ in Congress say that all-the-time...

    • @unreal-the-ethan
      @unreal-the-ethan 7 років тому +17

      No, _everyone_ said this...
      in a sarcastic manner.

  • @illinoisdarkskystarparty2812
    @illinoisdarkskystarparty2812 2 роки тому +65

    Thank you! There are lots of discussions of e on UA-cam, but this is by far the most lucid I have seen. I learned calculus 55 years ago, never used it in real life (I became a soldier and later a lawyer) and am returning to re-learn it at my own pace. This video has been a tremendous help in my understanding of this important concept.

    • @rajeshpandey2198
      @rajeshpandey2198 2 роки тому +3

      Your story is interesting

    • @justanotherguy469
      @justanotherguy469 2 роки тому +5

      Is not it such a treat? It is analogous to discovering classical music later on in life, when you were once exposed to it as a child, but strayed from it to listen to contemporary music in the interim.

  • @clumsyjester459
    @clumsyjester459 8 років тому +210

    e^(i*pi)+1=0 not only brings together the most important constants, but also the basic arithmetic operations addition, multiplication and exponentiation.

    • @Kuolema1337
      @Kuolema1337 8 років тому +35

      And is the most tatooed formula among maths nerds.

    • @johndododoe1411
      @johndododoe1411 2 роки тому +1

      Yet it works only because of some semi arbitrary definitions, such as the extension of powers of e along the imaginary axis.

    • @PC_Simo
      @PC_Simo 2 роки тому

      @Clumsy Jester Exactly 👌🏻🎯😌.

  • @rexlongfellow
    @rexlongfellow 5 років тому +963

    8:58 when they say Infinity War is the most ambitious crossover in history

    • @WillsOW4
      @WillsOW4 3 роки тому +2

      What?

    • @sticks9757
      @sticks9757 3 роки тому +2

      I don't get it

    • @goat6354
      @goat6354 3 роки тому +3

      Lol

    • @78anurag
      @78anurag 3 роки тому +27

      @@sticks9757 e , π and i(√-1 if you don't know) are the most iconic constants (except i) in Math. So in this equation they powered e to the power of π multiplied by i and added them with 1 which is equal to 0 (bizzare actually. How e, π and i are really complex numbers in math somehow combine into making a simple number which is -1) So in summary all the iconic constants(except i) in 1 equation.

    • @sticks9757
      @sticks9757 3 роки тому +5

      @@78anurag That's literally not what I asked

  • @JS_SN_UQAU
    @JS_SN_UQAU 8 років тому +281

    best title - 10/10

  • @MrDaraghkinch
    @MrDaraghkinch 3 роки тому +129

    Pride x humility = "I would not have called it g, I would have hoped that someone else would have called it g and I would have accepted that."

  • @arazemijo9674
    @arazemijo9674 5 років тому +158

    This is my new favorite channel; it's so well-explained, interesting and fun even when dealing with complex topics, and yet somehow really adorable and nerdy at the same time.

  • @cyclingcycles7953
    @cyclingcycles7953 6 років тому +8653

    I can't believe Euler predicted the meme.

    • @terrariaman8454
      @terrariaman8454 5 років тому +66

      no he didn't

    • @randomstuff6821
      @randomstuff6821 5 років тому +519

      @@terrariaman8454 wooosh

    • @tipstyx1867
      @tipstyx1867 5 років тому +189

      Terraria Man r/woooosh

    • @Ingaldre
      @Ingaldre 5 років тому +290

      @@tipstyx1867 r/ihavereddit

    • @theshuman100
      @theshuman100 5 років тому +104

      You fool. The man made the oldest shitpost

  • @edu2076
    @edu2076 4 роки тому +531

    December 31st 2019, 3:52 AM GMT
    2.718.281 (e million) views
    :)

  • @Stargazer93
    @Stargazer93 3 роки тому +13

    I legitimately believe this will help when I try to do a college calculus class again. No one bothers to explain what’s going on with new material. When you understand why you use symbols and how, it makes it easier to solve things. Thank you.

  • @vicr123
    @vicr123 8 років тому +124

    What a lovely title. Captures the essence of this video quite well. Fully encapsulates and proves the quote by the "not-so-well-known-outside-his-circles" Victor Tran, "A letter says an entire video!" :)

    • @badmanjones179
      @badmanjones179 8 років тому +11

      clik bait title

    • @bigsmoke4357
      @bigsmoke4357 8 років тому +10

      badman jones how tf is 'e' clickbait?

    • @mb_2174
      @mb_2174 8 років тому +3

      Prediator X makes ya curious. "what the heck? its just an e?? gotta look at this"
      not enough to classify as clickbait though!

    • @vicr123
      @vicr123 8 років тому +2

      Merlin Brennt But this is a mathematical channel. As soon as I saw the title, I knew that they were going to do something with Euler's constant. :)
      But I suppose the logarithmic graph and James Grime on the thumbnail helped too :)

    • @mb_2174
      @mb_2174 8 років тому +5

      Victor Tran oh you must be very smart!

  • @martinshoosterman
    @martinshoosterman 8 років тому +175

    Whats this, A Numberphile video, about a real number!? I never thought id see the day.

    • @thomassynths
      @thomassynths 8 років тому +18

      It also happens to be a complex number.

    • @martinshoosterman
      @martinshoosterman 8 років тому +6

      Thomas Eding um, no it isnt.

    • @thomassynths
      @thomassynths 8 років тому +47

      Complex numbers encompass the reals. It is complex with imaginary part = 0.

    • @JustPingo
      @JustPingo 8 років тому +11

      Thomas Eding e is totally on the complex plane.

    • @michaelbauers8800
      @michaelbauers8800 8 років тому +11

      All real numbers are in the set of complex numbers. If that seems odd, just consider also that all integers are in the set of reals...etc.

  • @vseve9397
    @vseve9397 8 років тому +2150

    what is up with all these clickbait titles

    • @nejx8711
      @nejx8711 8 років тому +74

      VSeve I know right, they didn't even put the thumbnail in the video. Fockin clickbaiters😂😂😂

    • @ApplicationBot
      @ApplicationBot 8 років тому +71

      VSeve they need more arrows and circles

    • @drew.k2385
      @drew.k2385 8 років тому +64

      How is it clickbait? The video is about... e.

    • @ApplicationBot
      @ApplicationBot 8 років тому +177

      Andrew anon its an ironic comment

    • @nejx8711
      @nejx8711 8 років тому +28

      ApplicationBot Technically, since he obviously knew what he was talking about, it wasn't ironic, it was just a joke.

  • @Arkhs
    @Arkhs 2 роки тому +12

    I've been trying to understand the relevance of this for days, but you made it so damn simple to understand. Truly the best channel for maths content.

  • @superscienceshow
    @superscienceshow 2 роки тому +4

    The relation and usefulness of e, I, and trigonometry melted my mind.

  • @ErZi-uo7fm
    @ErZi-uo7fm 5 років тому +164

    8:58 Biggest crossover in history.

  • @Desiqnify
    @Desiqnify 8 років тому +1140

    e

    • @Iscannon
      @Iscannon 8 років тому +10

      No one cares

    • @Desiqnify
      @Desiqnify 8 років тому +5

      Sari Masu yea haha I look in subscriptions and was uploaded 3 second ago :D

    • @max19970
      @max19970 8 років тому +3

      e

    • @Hepad_
      @Hepad_ 8 років тому +19

      2.718281828459045235360287471352662497757247093699959574966967627724076630353
      547594571382178525166427427466391932003059921817413596629043572900334295260
      595630738132328627943490763233829880753195251019011573834187930702154089149
      934884167509244761460668082264800168477411853742345442437107539077744992069
      551702761838606261331384583000752044933826560297606737113200709328709127443
      747047230696977209310141692836819025515108657463772111252389784425056953696
      770785449969967946864454905987931636889230098793127736178215424999229576351
      482208269895193668033182528869398496465105820939239829488793320362509443117
      301238197068416140397019837679320683282376464804295311802328782509819455815
      301756717361332069811250996181881593041690351598888519345807273866738589422
      879228499892086805825749279610484198444363463244968487560233624827041978623
      209002160990235304369941849146314093431738143640546253152096183690888707016
      768396424378140592714563549061303107208510383750510115747704171898610687396
      965521267154688957035035402123407849819334321068170121005627880235193033224
      745015853904730419957777093503660416997329725088687696640355570716226844716
      256079882651787134195124665201030592123667719432527867539855894489697096409
      754591856956380236370162112047742722836489613422516445078182442352948636372
      141740238893441247963574370263755294448337998016125492278509257782562092622
      648326277933386566481627725164019105900491644998289315056604725802778631864
      155195653244258698294695930801915298721172556347546396447910145904090586298
      496791287406870504895858671747985466775757320568128845920541334053922000113
      786300945560688166740016984205580403363795376452030402432256613527836951177
      883863874439662532249850654995886234281899707733276171783928034946501434558
      897071942586398772754710962953741521115136835062752602326484728703920764310
      059584116612054529703023647254929666938115137322753645098889031360205724817
      658511806303644281231496550704751025446501172721155519486685080036853228183
      152196003735625279449515828418829478761085263981395599006737648292244375287
      184624578036192981971399147564488262603903381441823262515097482798777996437
      308997038886778227138360577297882412561190717663946507063304527954661855096
      666185664709711344474016070462621568071748187784437143698821855967095910259
      686200235371858874856965220005031173439207321139080329363447972735595527734
      907178379342163701205005451326383544000186323991490705479778056697853358048
      966906295119432473099587655236812859041383241160722602998330535370876138939
      639177957454016137223618789365260538155841587186925538606164779834025435128
      439612946035291332594279490433729908573158029095863138268329147711639633709
      240031689458636060645845925126994655724839186564209752685082307544254599376
      917041977780085362730941710163434907696423722294352366125572508814779223151
      974778060569672538017180776360346245927877846585065605078084421152969752189
      087401966090665180351650179250461950136658543663271254963990854914420001457
      476081930221206602433009641270489439039717719518069908699860663658323227870
      937650226014929101151717763594460202324930028040186772391028809786660565118
      326004368850881715723866984224220102495055188169480322100251542649463981287
      367765892768816359831247788652014117411091360116499507662907794364600585194
      199856016264790761532103872755712699251827568798930276176114616254935649590
      379804583818232336861201624373656984670378585330527583333793990752166069238
      053369887956513728559388349989470741618155012539706464817194670834819721448
      889879067650379590366967249499254527903372963616265897603949857674139735944
      102374432970935547798262961459144293645142861715858733974679189757121195618
      738578364475844842355558105002561149239151889309946342841393608038309166281
      881150371528496705974162562823609216807515017772538740256425347087908913729
      172282861151591568372524163077225440633787593105982676094420326192428531701
      878177296023541306067213604600038966109364709514141718577701418060644363681
      546444005331608778314317444081194942297559931401188868331483280270655383300
      469329011574414756313999722170380461709289457909627166226074071874997535921
      275608441473782330327033016823719364800217328573493594756433412994302485023
      573221459784328264142168487872167336701061509424345698440187331281010794512
      722373788612605816566805371439612788873252737389039289050686532413806279602
      593038772769778379286840932536588073398845721874602100531148335132385004782
      716937621800490479559795929059165547050577751430817511269898518840871856402
      603530558373783242292418562564425502267215598027401261797192804713960068916
      382866527700975276706977703643926022437284184088325184877047263844037953016
      690546593746161932384036389313136432713768884102681121989127522305625675625
      470172508634976536728860596675274086862740791285657699631378975303466061666
      980421826772456053066077389962421834085988207186468262321508028828635974683
      965435885668550377313129658797581050121491620765676995065971534476347032085
      321560367482860837865680307306265763346977429563464371670939719306087696349
      532884683361303882943104080029687386911706666614680001512114344225602387447
      432525076938707777519329994213727721125884360871583483562696166198057252661
      220679754062106208064988291845439530152998209250300549825704339055357016865
      312052649561485724925738620691740369521353373253166634546658859728665945113
      644137033139367211856955395210845840724432383558606310680696492485123263269
      951460359603729725319836842336390463213671011619282171115028280160448805880

    • @DNXTMaster
      @DNXTMaster 8 років тому +15

      Liwo Jima you forgot a couple digits

  • @10thdoctor15
    @10thdoctor15 Рік тому +4

    It is a beautiful equation. I had it on my birthday cake when I was 18.

  • @nickjohnson8495
    @nickjohnson8495 6 років тому +433

    e is such an interesting number. I came up with the strangest function that approached e as x approached infinity.
    y = 1/((x^(x+1)/(x+1)^x) - ((x-1)^x/x^(x-1)
    It’s pretty cool.
    ex: (56^57 / 57^56) - (55^56 / 56^55)
    Take a reciprocal of this number and be amazed

    • @aishwaryajangir2909
      @aishwaryajangir2909 6 років тому +16

      great job!

    • @blue9139
      @blue9139 6 років тому +4

      What about this
      Y^D=Y
      So tell me What numbers the letters are ok

    • @tuckersmith7991
      @tuckersmith7991 6 років тому +57

      e shows up in very interesting places. x^y=y^x is an unusual graph that shows 2 lines, one linear and one curved, intersecting at the point (e,e). the graph of x^x also contains some e-related information; the minimum value for f(x) is at x=e^-1, or decimal 0.3678... so the lowest point in the graph of x^x is (e^-1,(e^-1)^e^-1)) or (0.3678,0.6922). It all has to do with exponential and logarithmic growth.

    • @madhavgaur5412
      @madhavgaur5412 6 років тому +10

      Nice work bro, I like these types of persons

    • @anonsensename5101
      @anonsensename5101 6 років тому +14

      Just use (1 + 1/x)^x like normal people...
      Ok it's a joke, don't get offended

  • @jawadulkabir9120
    @jawadulkabir9120 2 роки тому +6

    I think this is the first numberphile video I ever watched and I come back to rewatch it every once in a while. I just love it.

  • @lawnmower69
    @lawnmower69 6 років тому +8

    I mostly like how passionate and excited he is while talking about this math's stuff

  • @natroful
    @natroful 4 роки тому +7

    this content is timeless thanks for all the enthusiasm and clarity

  • @fatinahmad6591
    @fatinahmad6591 7 років тому +10

    شكرا جزيلا على هذا الشرح المبسط واشكر كل من قام بالترجمة ...اتمنى المزيد 🌺🌷

  • @owenlewis6546
    @owenlewis6546 6 років тому +2496

    Lord Farquad wants to know your location.

    • @Klarpimier
      @Klarpimier 6 років тому +65

      Owen Lewis you mean Lord MARKquad

    • @Yudhiprasada
      @Yudhiprasada 6 років тому +19

      Markiplier wants to know your location.

    • @lordfarquadfn9736
      @lordfarquadfn9736 5 років тому +5

      uhh...

    • @sadkat4499
      @sadkat4499 5 років тому +5

      Lord Farquad *E*

    • @OG_CK2018
      @OG_CK2018 4 роки тому +2

      I can switch this between 2k likes and 2.1k likes imao

  • @devincory9695
    @devincory9695 6 років тому +5762

    We're gonna talk about...


    EEEEEEEEEEEEEEEE
    EEEEEEEEEEEEEEEE
    EEEEE
    EEEEE
    EEEEEEEEEEE
    EEEEEEEEEEE
    EEEEE
    EEEEE
    EEEEEEEEEEEEEEEE
    EEEEEEEEEEEEEEEE

    • @okokokx2934
      @okokokx2934 6 років тому +67

      EEEEEEEEEEEEEEEE
      EEEEEEEEEEEEEEEE
      EEEEEE
      EEEEEE
      EEEEEEEEEEEEEEEE
      EEEEEEEEEEEEEEEE
      EEEEEE
      EEEEEE
      EEEEEEEEEEEEEEE
      EEEEEEEEEEEEEEE

    • @seangrand3885
      @seangrand3885 6 років тому +337

      . eeeeeee
      eeeeeeeeeee
      eeee eeeee
      eeeeeeeeeeeeeee
      eeee
      eeee eeee
      eeeee eeee
      eeeeeeeee

    • @domjanabi6006
      @domjanabi6006 6 років тому +139

      E and e is not the same

    • @seangrand3885
      @seangrand3885 6 років тому +59

      domjanabi yeah, one is capital, the other is lowercase

    • @blue9139
      @blue9139 6 років тому +25

      EEEEEEEEEEEEEEEEEEEEEEE
      EEEEEEEEEEEEEEEEEEEEEEE
      EEEEE
      EEEEE
      EEEEE
      EEEEE
      EEEEEEEEEEEEEEEEEEEEEEE
      EEEEEEEEEEEEEEEEEEEEEEE
      EEEEE
      EEEEE
      EEEEE
      EEEEE
      EEEEEEEEEEEEEEEEEEEEEEE
      EEEEEEEEEEEEEEEEEEEEEEE
      EEEEEEEEEEEEEEEEEEEEEEE
      EEEEEEEEEEEEEEEEEEEEEEE
      EEEEE
      EEEEE
      EEEEE
      EEEEE
      EEEEEEEEEEEEEEEEEEEEEEE
      EEEEEEEEEEEEEEEEEEEEEEE
      EEEEE
      EEEEE
      EEEEE
      EEERE
      EEEEEEEEEEEEEEEEEEEEEEE
      EEEEEEEEEEEEEEEEEEEEEEE
      VVV
      VVV
      VVV
      VVV
      VVV
      VVV VVV
      VVVVVV

  • @jacksonstarky8288
    @jacksonstarky8288 4 роки тому +87

    As this video approaches pi million views, it occurs to me that I would love for Numberphile to revisit Euler's other number -- gamma -- from a mathematician's perspective. I enjoyed Tony's video on the subject, but I would be very interested to learn more about the mathematical underpinnings of gamma, including its connection to the Gamma and zeta functions, and given that James has discussed Riemann before, he seems to be the logical choice for such a video. I've been waiting for 3Blue1Brown to do something on gamma tying in with their videos on Riemann and the prime number spirals too. Maybe because we know so little about it, but I find gamma to be a far more interesting number than either pi or e... which are still the second and third most interesting numbers, with the golden ratio coming in at #4.

  • @LRosieB
    @LRosieB 5 років тому +31

    Thank you so much for this, I’m learning logarithms right now, and I couldn’t understand what the natural logarithm was about and wanted to know. This helps a lot!

  • @william.darrigo
    @william.darrigo 7 років тому +16

    I always understood e using limits in Calculus however this is a great, practical view that should be taught in class. Great video!

  • @picknikbasket
    @picknikbasket 8 років тому +87

    Crikey Bluey, there was a flamin' Ozzie 10c piece in there!

  • @unternerdsbyalexandraelisa7550
    @unternerdsbyalexandraelisa7550 4 роки тому +8

    Thanks for this enthusiastic explanation! :)
    I find the use of e very useful in complex analysis, where we can write e^(it) instead of cos(t) + i sin(t).

    • @StephenAnimations
      @StephenAnimations 3 роки тому

      Which of those expressions would be easier to evaluate? I suppose I could plug in some dummy values and figure out myself but im lazy.
      Personally I think the latter expression but I like how the first expression is more compact.

  • @corruptio
    @corruptio 8 років тому +53

    f(x)=0 also has that property... but not as useful.

    • @GuyfromtheWAN
      @GuyfromtheWAN 6 років тому

      Jay Chan isn't the gradient of X=0 infinity?

    • @seansmolinski
      @seansmolinski 6 років тому +11

      f(x) = 0 is not synonymous with x=0, but y=0. At any point on the function, the output (y) is equal to 0, the slope is 0, and the area under the curve is 0.

  • @eqral
    @eqral 5 років тому +7

    This video just made me extremely excited about math. For the first time, i actually enjoyed learning this.

  • @antoniofossaluzza1642
    @antoniofossaluzza1642 8 років тому +233

    pi > e

  • @Torthrodhel
    @Torthrodhel 4 роки тому +5

    That's fascinating especially the bit where the area = the value = the gradient.

  • @Udhaya.K
    @Udhaya.K 5 років тому +30

    Beautiful video! I now have a neat idea of what Euler's constant.
    Nearly at the end of the video, you mentioned that if we don't use Euler's constant we will have nasty ratios introduced into the equation, which will make it more complicated.
    Can you pl. show one such example? The lecture will be complete with that.
    And again, thanks a ton for this video!

    • @Justin-tp1mx
      @Justin-tp1mx 2 роки тому +1

      If you're taking the integral or derivative of an exponential function like 2^x, you would have to divide or multiply by the natural logarithm of 2. with e^x, ln(e) is one so dividing or multiplying by it doesn't need to be written.

  • @xrisku
    @xrisku 7 років тому +109

    this is why you pay your mortgage every 2 weeks, and make one extra payment a year, and a 30yr mtg = ~15 yrs. the interest kills you.

    • @yoyoGalo
      @yoyoGalo 5 років тому +4

      xrisku yet with inflation that changes

    • @R3lay0
      @R3lay0 5 років тому

      It's still calculated p.a.

    • @JG-tt4sz
      @JG-tt4sz 3 роки тому +1

      Many banks simply hold the partial payment until the complete monthly payment is received.

    • @carultch
      @carultch 2 роки тому

      I don't think a bank gives you any credit for paying multiple times within the month.

  • @moosewhisker8072
    @moosewhisker8072 8 років тому +82

    e^x is not the only function to have the same area, value, and gradient. f(x)=0 also has that property.

    • @DavidBooercheese
      @DavidBooercheese 8 років тому +7

      MOOSEWHISKER so does 2 * e^x :O

    • @Zolhungaj
      @Zolhungaj 8 років тому +182

      That's true of all functrions on the form f(x) = ke^x, where k is a constant. Your is a special case where k = 0

    • @W.M.-
      @W.M.- 8 років тому +11

      Chrischo1997 finally someone who knows what there on about

    • @ericdunn9001
      @ericdunn9001 8 років тому +36

      That's trivial

    • @zuzusuperfly8363
      @zuzusuperfly8363 8 років тому +2

      +marche45
      Here's how I think about your comment. Zero could be considered a trivial multi-variable function, with a well-defined gradient. That gradient is zero. If you say, "0 does not have a gradient", doesn't that mean you're implicitly saying that 'having the value zero' is the same thing as 'not having a value'? Little bit pedantic, but that's the spirit of this thread anyway.

  • @Triadii
    @Triadii 4 роки тому +4

    I love how everything comes together, especially in the end..

  • @ChickenSuitGuy
    @ChickenSuitGuy 7 років тому +752

    smooth e

    • @PoopTVYTP
      @PoopTVYTP 6 років тому +4

      309 likes and still no answers

    • @sergiofls7623
      @sergiofls7623 6 років тому +9

      e

    • @venkateshbabu5623
      @venkateshbabu5623 6 років тому +2

      Nice mix.

    • @clippygoat
      @clippygoat 6 років тому +5

      And here we are, the letter e used to be a running jokes on siIva’s rips and now a lord farquaad meme.
      So siIva is now a normie meme?

    • @iblesstherains
      @iblesstherains 6 років тому +1

      *TASTE E*

  • @pablogriswold421
    @pablogriswold421 8 років тому +181

    Does saying "Don't put this in the video" ever work?

    • @badmanjones179
      @badmanjones179 8 років тому +62

      we will never know because there can never be recorded evidence, because that would mean putting it in the video

    • @pablogriswold421
      @pablogriswold421 8 років тому +5

      badman jones Perhaps memoirs would recollect how a courteous editor obeyed the request?

    • @revansithari2060
      @revansithari2060 8 років тому +10

      Pablo Griswold you could put it in a separate video and thus you wouldn't be putting it in the video the person's telling you not to put it in

    • @cykikvisage
      @cykikvisage 8 років тому +18

      Why don't you ask Schrodinger?

    • @badmanjones179
      @badmanjones179 8 років тому +7

      Revan Sith'ari ahah imagine like a whole "dont put that in the video" compilation

  • @jtveg
    @jtveg 8 років тому +303

    The UA-cam video with the shortest title?

    • @ThatWarioGiant
      @ThatWarioGiant 8 років тому +101

      John Thimakis no vsauce holds that title with no title

    • @all_time_Jelly_Fish
      @all_time_Jelly_Fish 8 років тому +29

      John Thimakis yet it doesn't terminate

    • @vyuni9220
      @vyuni9220 8 років тому +5

      there's a vsauce3 video with an infinity symbol as the title... so no, not quite

    • @shamilk4158
      @shamilk4158 8 років тому +3

      e

    • @clynaelle
      @clynaelle 8 років тому +44

      John Thimakis Vsauce also has a video with no title, its about nothingness

  • @subaduck
    @subaduck 4 роки тому +26

    I'm a complete mathematical moron, and yet I've always been fascinated by higher level maths. The idea of calculus, even geometry is just amazing. I've never in my life found anybody who could get me through a college level algebra course. I get close, but have never been able to finish it. I feel as though I've always sat outside the sun, watching other people achieve and understand this. I'm a sort of "Flowers For Algernon" guy. In any case, this is really interesting.

  • @golightning291
    @golightning291 5 років тому +11

    BRING BACK JAMES
    -A big numberphile fan, August 2019

  • @dooki51
    @dooki51 6 років тому +715

    Happy e day! (2/7/18)

    • @agnomilted5206
      @agnomilted5206 5 років тому +31

      What about 27 January?

    • @Dude-cf8hb
      @Dude-cf8hb 5 років тому

      Woowowowowowowowowowowowowowowowowowoeowowowow

    • @kiremitt
      @kiremitt 5 років тому +31

      I late. Waiting for 27/18/28

    • @darkfrei2
      @darkfrei2 5 років тому +5

      The next is 2718-2-8

    • @ameeraallee539
      @ameeraallee539 5 років тому +6

      Oh my gosh... there can only be one e day a century🤤

  • @OriginalPiMan
    @OriginalPiMan 8 років тому +105

    y = 0
    gradient is 0, area under the graph is 0

    • @muellernikolai8630
      @muellernikolai8630 8 років тому +4

      lol that's actually true xD

    • @danielglen410
      @danielglen410 8 років тому +3

      says person with a pony icon

    • @gaouchos35
      @gaouchos35 8 років тому +8

      Yeah but that function is boring and useless :(

    • @Terminator5618
      @Terminator5618 8 років тому +1

      Is this for e^x? Or all functions? Both don't work because n^x=0 is undefined except for n=0, and there are plenty of functions where the gradient at y=0 is not 0? or am I misinterpreting the idea? Haha

    • @Terminator5618
      @Terminator5618 8 років тому

      OriginalPiMan Nevermind, just got it. "f(x)->0". Mind you, this is kinda cheating seeing as the x value has no effect on the gradient anyway ;)

  • @simonbeasley989
    @simonbeasley989 3 роки тому +3

    Great explanation. How have I never been taught this before, it took just 10 minutes and I totally get it.

  • @dvdossbsvskfbdvav
    @dvdossbsvskfbdvav 8 років тому +282

    I sexually identify as Euler's Number.

    • @scoutswell
      @scoutswell 8 років тому

      This comment made me laugh c:

    • @gunjeetsingh90
      @gunjeetsingh90 8 років тому +19

      So basically you make it easy to visualize growth

    • @dvdossbsvskfbdvav
      @dvdossbsvskfbdvav 8 років тому +37

      gunjeet singh I visualise growth in many ways ( ͡° ͜ʖ ͡°)

    • @Slackow
      @Slackow 8 років тому

      that killed me

    • @lagduck2209
      @lagduck2209 8 років тому

      but you are whale?!

  • @MrBrightlight66
    @MrBrightlight66 8 років тому +8

    great video. Thumbs up of course.
    Euler's formula is incredible - raising an irrational number to the power of another irrational number multiplied by an imaginary number giving a negative integer - mind blowing.

  • @aaronleperspicace1704
    @aaronleperspicace1704 5 років тому +352

    "Euler, he works everything out!"
    Well does he work out?

    • @ximalas
      @ximalas 4 роки тому +49

      He's having a break now. Stay tuned for the next iteration of the Universe.

    • @adtoes
      @adtoes 3 роки тому +4

      Does he even lift bro

    • @Raptorman0909
      @Raptorman0909 3 роки тому +13

      He skipped everything but head day ... wait, that sounded kind of dirty!

    • @johnbyron1077
      @johnbyron1077 3 роки тому +3

      @@Raptorman0909 It did didn't it?

    • @scratch7996
      @scratch7996 8 місяців тому

      @@Raptorman0909Calling it brain day would work

  • @alerdoballabani8322
    @alerdoballabani8322 Рік тому +1

    An absolute masterpiece, I have not seen a better explanation historical or logical before.
    Well done.

  • @TheDoc73
    @TheDoc73 5 років тому +5

    I know it's been around for years, but I gotta say this is my favorite video this channel has done. Why? Because I didn't understand this number before, but with the way it was explained, the number is beautiful.
    It really makes me wonder what other everyday events could generate new mathematical constants in the future.

    • @kvegh
      @kvegh 3 роки тому

      +1

  • @herculesmachado3008
    @herculesmachado3008 7 років тому +4

    Congratulações. Excelent work: Dr. James Grime has the hability to be clear in teaching.

  • @tsjoencinema
    @tsjoencinema 5 років тому +28

    Five minutes in to math and chill and he gives you this look 5:18

  • @alhassanelsayed5861
    @alhassanelsayed5861 Рік тому

    the amount of passion and love for math makes the points go straight to ur heart and brain

  • @psychoh13
    @psychoh13 8 років тому +202

    "Don't put that in the video" *puts it in the video* typical!

    • @looijmansje
      @looijmansje 8 років тому +32

      We can not know how many times they actually say that, and it is actually not in the video. So you can't say if it is really typical.

    • @psychoh13
      @psychoh13 8 років тому +10

      Koen Looijmans ಠ_ಠ

    • @Skeleton-bs7zy
      @Skeleton-bs7zy 7 років тому

      I gave you 200

  • @MoskaTalks
    @MoskaTalks 7 років тому +6

    Holy cow... I finally understand e ... That was brilliant

  • @elektronz123
    @elektronz123 4 роки тому +4

    3:51 let’s just take a moment to appreciate his hard work

  • @salacommander2674
    @salacommander2674 Рік тому +2

    My biggest problem with math is that it drives me crazy to just plug numbers into formulas without knowing the significance of that number and why it needs to be in said formula. e has been driving me crazy for a while now and none of the explanations I'd gotten satisfied me until seeing this, so thank you.

  • @ShinySwalot
    @ShinySwalot 8 років тому +180

    Could you please make a video on all relations between e and pi?
    Because there are so many weird ones

    • @ShinySwalot
      @ShinySwalot 8 років тому

      *****​ That's pretty neat!
      I'm a physics student btw

    • @ShinySwalot
      @ShinySwalot 8 років тому

      And there's a reason for that too?

    • @ShinySwalot
      @ShinySwalot 8 років тому

      A great mathematical reason of course ;)
      Might there also be a relation like pi^i*e perhaps?

    • @ShinySwalot
      @ShinySwalot 8 років тому +4

      I wish I had such beautiful dreams...
      But e and pi are some weird numbers indeed. And the fact that they are related in so many ways is even stranger!

    • @TimpBizkit
      @TimpBizkit 6 років тому

      i e pi (Weebl and Bob)

  • @Ostebrix
    @Ostebrix 8 років тому +324

    pi minus e is 0.42... meaning of life confirmed

    • @liljefe3016
      @liljefe3016 7 років тому +7

      StupidNedFlander that's what those '...' mean.

    • @mrlabon123
      @mrlabon123 7 років тому +33

      I wanted to like this comment but didn't because it has 42 likes.

    • @norielsylvire4097
      @norielsylvire4097 7 років тому +1

      Ostebrix s
      and so what, 0.42.. is log5?? no I dont know what is 0.42

    • @heheheiamasupahstarchimera631
      @heheheiamasupahstarchimera631 7 років тому +5

      StupidNedFlander
      It's called rounding

    • @funkygecko
      @funkygecko 7 років тому +17

      two numbers being irrational doesnt guarantee that their sum will be irrational too. You may be correct in this specific case but your explanation isn't correct

  • @otakuribo
    @otakuribo 8 років тому +14

    James Grime is baaaack!
    This is what I love about Numberphile; you made me not only understand maths, but you made me realize I ENJOY maths. I had no idea what e was about before this video, yet I knew about Euler's identity and that it was supposed to be this awesome beautiful formula. Now I understand WHY it's so famous; even if James is "a bit jaded" to it. :) For some of us, seeing it illuminated in the proper light for the first time... it is beautiful.

  • @lyuchang5665
    @lyuchang5665 4 роки тому +1

    value = gradient = area.... OMG! I have used e for many years, first time noticing this amazing thing!! Thank you for the tutorial!

  • @user-AADZ
    @user-AADZ 8 місяців тому +60

    Wow SiIvagunner

    • @RadeonVega64
      @RadeonVega64 8 місяців тому +8

      yea

    • @EbonyPope
      @EbonyPope 6 місяців тому

      5:50 Do you add 1 to the denominator and then divide by 2 or do you add 1+1/2? I'm confused to as to how the sequence of the operations is with such a fraction. Can anyone help me?

    • @amazingkook143
      @amazingkook143 5 місяців тому

      @@EbonyPope It's an infitie fraction so there is no end. It's more like the 2nd option you have. You would basically say when you want to stop writing down the fractions and then solve for it going backwards from down up.

  • @Zodiacman16
    @Zodiacman16 8 років тому +146

    Your thumbnail is mine now.

    • @TheEssem
      @TheEssem 7 років тому +2

      Makoren Why does your pic look so familiar

    • @chhavigupta2802
      @chhavigupta2802 7 років тому +1

      Essem because it's the same pic as in Ur identity card.

  • @ChadEichhorn
    @ChadEichhorn 8 років тому +14

    the function y=0 also has its value as its gradient and area underneath from negative infinity. just wanted to point that one out.

    • @Ulkomaalainen
      @Ulkomaalainen 8 років тому

      Actually, any function y=a*e^x has that property - thanks to the constant factor rule - with the special cases of a=1 (y=1*e^x=e^x) and a=0 (y=0*e^x=0)

    • @ChadEichhorn
      @ChadEichhorn 8 років тому

      well yeah, a*e^x is the solution to the differential equation y=dy/dx. but most people would consider y=0 to be a "different" function than the rest.

    • @ChadEichhorn
      @ChadEichhorn 8 років тому

      yup. I had previously said "most people" because the vast majority of Numperphile viewers have not received higher level math education.

    • @Ulkomaalainen
      @Ulkomaalainen 8 років тому

      Pointing out "y=0 has that property, too" works very often for exactly these reasons though. It is a polynomial with point symmetry. It is a polynomial with reflection symmetry. Thus I've often heard solutions of "everything is zero" or sometimes "is one" as trivial cases, thus I was brainwashed into finding general solutions more attractive, especiall if they, like here, also include the trivial one :)

    • @ChadEichhorn
      @ChadEichhorn 8 років тому +3

      Ulkomaalainen brainwashed? you mean taught? nontrivial solutions are more attractive because they're actually useful, it's not just something we do because they look cooler

  • @maskedmarvyl4774
    @maskedmarvyl4774 Рік тому +1

    I would never have understood this concept if it wasn't for this video.

  • @cyancoyote7366
    @cyancoyote7366 8 років тому +408

    Isn't this channel called "Numberphile"?
    Not "Letterphile".
    Kappa.

    • @forrester8318
      @forrester8318 8 років тому +17

      It is a number represented by a letter. Kappa

    • @michaelpsellos2560
      @michaelpsellos2560 8 років тому +8

      Kappa means he didnt mean it seriously

    • @mattegeniet
      @mattegeniet 8 років тому +31

      It's funny, since kappa is also a letter (κ).

    • @jesusnthedaisychain
      @jesusnthedaisychain 8 років тому +8

      Letterphile would end rather quickly, wouldn't it?

    • @villanelo1987
      @villanelo1987 8 років тому +1

      They already talked about all the numbers, so now that there are no more numbers to talk about, they have to start with letters.
      Otherwise, there wouldn't be any content, so I am ok with letterphile.

  • @Flexy59
    @Flexy59 7 років тому +26

    1:29 "Wow, thanks a lot bank!" made me laugh more than it should have

  • @christophergould8715
    @christophergould8715 2 роки тому +2

    Great video. I nearly understood what he was on about!

  • @aaronleperspicace1704
    @aaronleperspicace1704 5 років тому +94

    "Wow thanks a lot, bank!"
    😂😂😂🤭🤭

  • @gnomechild4459
    @gnomechild4459 8 років тому +43

    I really need to clean my monitor. It seemed especially Grimey during this video.

  • @Banzybanz
    @Banzybanz 5 років тому +8

    Dr. Grime seems so genuinely happy when he explains Maths. Is there any way I can attend any of his lectures?

  • @Selinathefashgenius
    @Selinathefashgenius 3 місяці тому

    Thank you sooo soooo much. I couldn't find a video that really explains the e. This is so helpful

  • @Patrick-cy2zh
    @Patrick-cy2zh 7 років тому +201

    I can smell the sharpie from here

  • @h_3795
    @h_3795 5 років тому +18

    7:44
    CORRECTION
    y=0 also has this property.

    • @h_3795
      @h_3795 4 роки тому +1

      Hassan Akhtar You right I retract my statement

    • @ActicAnDroid
      @ActicAnDroid 4 роки тому +3

      @@h_3795 so does y=C*0 for any constant C ;)

    • @woody40000
      @woody40000 4 роки тому +4

      Well that's just y=0*e^x ;)

    • @Dominexis
      @Dominexis 4 роки тому +2

      I believe 0^0 creates a wrinkle in this statement.

    • @isavenewspapers8890
      @isavenewspapers8890 8 місяців тому

      @@h_3795But you didn't actually say anything wrong. You were just offering a counterexample to a statement.

  • @PC_Simo
    @PC_Simo 2 роки тому +3

    James forgot the fact that e^iπ + 1 = 0 also has the 3 basic arithmetic operations: Addition, multiplication, and exponentiation (raising to a power); as well, as equality; and nothing else, apart from the constants: e, i, π, 1, and 0; which James already mentioned. Not to mention that it’s *_e_* that gets raised to the power; just like in the basic function of e: f(x) = e^x. It’s also very simple and easy to remember, and beautiful in that way. 😌

    • @cpotisch
      @cpotisch Рік тому

      He didn’t “forget” anything. All that is self-explanatory.
      You seriously think that no one noticed that e is in e^ipi?

    • @PC_Simo
      @PC_Simo Рік тому +1

      @@cpotisch As is the presence of e, i, π, 1, and 0; so, if you include them, there’s no reason not to include the other stuff; and, if you don’t include the other stuff, there’s no reason to include the constants, either.

    • @cpotisch
      @cpotisch Рік тому +1

      @@PC_Simo all the other stuff was already included because it’s literally in the identity.
      You are living in a different reality if you didn’t hear him say “that its e that gets raised to the power”. He objectively did.

    • @PC_Simo
      @PC_Simo Рік тому +1

      @@cpotisch Well, I sure missed that.

    • @cpotisch
      @cpotisch Рік тому +1

      @@PC_Simo Then that speaks to your own lack of mathematical prowess, because it was the most obvious thing I’ve ever seen.

  • @sydneydwoskin4950
    @sydneydwoskin4950 4 роки тому +1

    I've just starting considering this number extensively because of calculus one. This is wondrous. Thank you for the video

  • @Ultimate2T22
    @Ultimate2T22 2 роки тому +3

    e is also used for log or Ln bases like e^ln(2) or log based e.

  • @ProfessorBeautiful
    @ProfessorBeautiful 3 роки тому +4

    4:58 I believe that "e" is officially the Euler number, & the Euler constant is γ ≈ 0.5772.

  • @ronin6158
    @ronin6158 5 років тому +7

    7:27 is truly explaining this. It's confusing when others talk about e like its some universal constant worked into all of nature, which is strange. Here he shows that you *could* use other terms, its just *easier* to use e, since it's where area and tangent coincide.

    • @douggarfinkel2415
      @douggarfinkel2415 10 місяців тому

      "The number "e" is the "natural" exponential, because it arises naturally in math and the physical sciences (that is, in "real life" situations), just as pi arises naturally in geometry." I include this quote from purplemath because you are mistakenly focused on the least important part of the video. We don't use e because it is easier, rather, e is necessary because it and no other number captures continuous growth.

  • @tyleralmquist7606
    @tyleralmquist7606 3 роки тому +2

    For those who are wondering why e to the pi*I equals -1, it is basically because of an infinite series that represents sine (if you ever hear an engineer say they approximate sine of x as just x, x is the first term of the infinite series. -x^3/6 is the next term, and as you add an infinite number of subsequent terms the limit equals sin(x).) We learned the proof in my calc two class so that was fun

  • @julioandresarriagarangel7183
    @julioandresarriagarangel7183 6 років тому +5

    Such a beautiful and simple explanation, thank you!

  • @drawesome7029
    @drawesome7029 7 років тому +107

    My favorite game is *e*.

  • @oskarpaulander4027
    @oskarpaulander4027 4 роки тому +2

    I love this video. Great at explaining e for the layman, yet completely technically correct and inspiring. Highlights both the importance and significance/practical usability of e as well as the pure beauty of e, and mathematics in general.
    But for the love of all that is holy don't say that "i is the square root of -1"

    • @caiojacques8436
      @caiojacques8436 4 роки тому

      It would be true if he was takig the square root of -1, but that would be i and -i
      We must start teaching the true definition of i and the true definition of complex numbers

    • @alaingronner661
      @alaingronner661 2 роки тому +2

      i is DEFINED as sqrt of -1. and i^2 = -1

  • @grumpclips
    @grumpclips 2 роки тому +3

    I can't listen to the intro without hearing the SiIvaGunner cover

  • @AlexKing-tg9hl
    @AlexKing-tg9hl 5 років тому +195

    You always have a Rubik’s cube in the background.
    I want to see you solve that

  • @umangjain293
    @umangjain293 8 років тому +4

    I was waiting for a video on e for soo long. Finally!

  • @OwenDLC
    @OwenDLC 4 роки тому +2

    This is perhaps one of my favorite videos of all time. Thank you.

  • @shreyjain3197
    @shreyjain3197 Рік тому +3

    the thumbnail haunts me in my dreams