Germany | Can you solve this? | Math Olympiad

Поділитися
Вставка
  • Опубліковано 31 гру 2024

КОМЕНТАРІ • 21

  • @evrankorkut8915
    @evrankorkut8915 2 дні тому +1

    Thank you very much

  • @stpat7614
    @stpat7614 День тому +1

    With complex roots (someone verify):
    4^a * 4^a = 80
    (4^a)^2 = 80
    (4^a)^2 = (sqrt[80])^2
    (4^a)^2 = (sqrt[2^4 * 5])^2
    (4^a)^2 = (sqrt[2^4] * sqrt[5])^2
    (4^a)^2 = ([2^4]^[1/2] * 5^[1/2])^2
    (4^a)^2 = (2^[4 * (1/2)] * 5^[1/2])^2
    (4^a)^2 = (2^2 * 5^[1/2])^2
    Let x = 4^a, and y = 2^2 * 5^(1/2)
    (4^a)^2 = (2^2 * 5^[1/2])^2
    => x^2 = y^2
    => x^2 - y^2 = y^2 - y^2
    => x^2 - y^2 = 0
    => (x - y)(x + y) = 0
    => (4^a - 2^2 * 5^[1/2])(4^a + 2^2 * 5^[1/2]) = 0
    Remember, (4^a)^2 = (2^2 * 5^[1/2])^2
    (4^a)^2 = (2^2 * 5^[1/2])^2
    ([2^2]^a)^2 = ([sqrt(2^2 * 5^[1/2])]^2)^2
    (2^[2 * a])^2 = ([sqrt(2^2) * sqrt(5^[1/2])]^2)^2
    (2^[a * 2])^2 = ([(2^2)^(1/2) * (5^[1/2])^(1/2)]^2)^2
    ([2^a]^2)^2 = ([2^(2 * [1/2]) * 5^([1/2] * [1/2])]^2)^2
    ([2^a]^2)^2 = ([2^(2/2) * 5^(1/4)]^2)^2
    ([2^a]^2)^2 = ([2 * 5^(1/4)]^2)^2
    Let x = 2^a, and b = 2 * 5^(1/4)
    (4^a - 2^2 * 5^[1/2])(4^a + 2^2 * 5^[1/2]) = 0
    => (x^2 - y^2)(x^2 + y^2) = 0
    => (x - y)(x + y)(x - y * i)(x + y * i) = 0
    => (2^a - 2 * 5^[1/4])(2^a + 2 * 5^[1/4])(2^a - 2 * 5^[1/4] * i)(2^a + 2 * 5^[1/4] * i) = 0
    Let n be an integer
    Suppose 2^a - 2 * 5^(1/4) = 0
    2^a - 2 * 5^(1/4) + 2 * 5^(1/4) = 0 + 2 * 5^(1/4)
    2^a = 2 * 5^(1/4)
    log(2^a) = log(2 * 5^[1/4])
    a * log(2) = log(2 * 5^[1/4])
    a * log(2) / log(2) = log(2 * 5^[1/4]) / log(2)
    a * 1 = log(2 * 5^[1/4]) / log(2)
    a = log_2(2 * 5^[1/4])
    a = log_2(2) + log_2(5^[1/4])
    a = log_2(2) + log_2(5^[1/4])
    a = 1 + (1/4) * log_2(5)
    a = 1 + log_2(5) / 4
    a1 = 1 + log_2(5) / 4
    Suppose 2^a + 2 * 5^(1/4) = 0
    2^a + 2 * 5^(1/4) = 0
    2^a + 2 * 5^(1/4) - 2 * 5^(1/4) = 0 - 2 * 5^(1/4)
    2^a = -2 * 5^(1/4)
    ln(2^a) = ln(-2 * 5^[1/4])
    a * ln(2) = ln(-2 * 5^[1/4])
    a * ln(2) / ln(2) = ln(-2 * 5^[1/4]) / ln(2)
    a * 1 = ln(-2 * 5^[1/4]) / ln(2)
    a = ln(-1 * 2 * 5^[1/4]) / ln(2)
    a = ln(-1) / ln(2) + ln(2 * 5^[1/4]) / ln(2)
    a = ln(e^[i * n * tau / 2]) / ln(2) + log_2(2 * 5^[1/4])
    a = (i * n * tau / 2) * ln(e) / ln(2) + log_2(2 * 5^[1/4])
    a = (2 * i * n * tau / 2^2) * ln(e) / ln(2) + log_2(2) + log_2(5^[1/4])
    a = (i * 2 * n * tau / 4) * 1 / ln(2) + 1 + (1/4) * log_2(5)
    a = (i * 2 * n * tau) / (4 * ln[2]) + 1 + log_2(5) / 4
    a2 = (i * 2 * n * tau) / (4 * ln[2]) + 1 + log_2(5) / 4
    Suppose 2^a - 2 * 5^(1/4) * i = 0
    2^a - 2 * 5^(1/4) * i = 0
    2^a - 2 * 5^(1/4) * i + 2 * 5^(1/4) * i = 0 + 2 * 5^(1/4) * i
    2^a = 2 * 5^(1/4) * i
    ln(2^a) = ln(2 * 5^[1/4] * i)
    ln(2^a) = ln(i * 2 * 5^[1/4])
    a * ln(2) = ln(i * 2 * 5^[1/4]) / ln(2)
    a * ln(2) / ln(2) = ln(i * 2 * 5^[1/4]) / ln(2)
    a * 1 = ln(i * 2 * 5^[1/4]) / ln(2)
    a = ln(i) / ln(2) + ln(2 * 5^[1/4]) / ln(2)
    a = ln(e^[i * n * tau / 4]) / ln(2) + log_2(2 * 5^[1/4])
    a = (i * n * tau / 4) * ln(e) / ln(2) + log_2(2) + log_2(5^[1/4])
    a = (i * n * tau / 4) * 1 / ln(2) + 1 + (1/4) * log_2(5)
    a = (i * n * tau) / (4 * ln[2]) + 1 + log_2(5) / 4
    a3 = (i * n * tau) / (4 * ln[2]) + 1 + log_2(5) / 4
    Suppose 2^a + 2 * 5^(1/4) * i = 0
    2^a + 2 * 5^(1/4) * i = 0
    2^a + 2 * 5^(1/4) * i - 2 * 5^(1/4) * i = 0 - 2 * 5^(1/4) * i
    2^a = -2 * 5^(1/4) * i
    ln(2^a) = ln(-2 * 5^[1/4] * i)
    a * ln(2) = ln(-1 * i * 2 * 5^[1/4])
    a * ln(2) / ln(2) = ln(-1 * i * 2 * 5^[1/4]) / ln(2)
    a * 1 = ln(-1 * i * 2 * 5^[1/4]) / ln(2)
    a = ln(-1 * i) / ln(2) + ln(2 * 5^[1/4]) / ln(2)
    a = ln(-1 * i) / ln(2) + log_2(2 * 5^[1/4])
    a = ln(e^[i * n * tau / 2] * e^[i * n * tau / 4]) / ln(2) + log_2(2) + log_2(5^[1/4])
    a = ln(e^[(i * n * tau / 2) + (i * n * tau / 4)]) / ln(2) + 1 + (1/4) * log_2(5)
    a = ln(e^[(i * 2 * n * tau / 2^2) + (i * n * tau / 4)]) / ln(2) + 1 + (1/4) * log_2(5)
    a = ln(e^[i * 3 * n * tau / 4]) / ln(2) + 1 + (1/4) * log_2(5)
    a = (i * 3 * n * tau / 4) * ln(e) / ln(2) + 1 + log_2(5) / 4
    a = (i * 3 * n * tau / 4) * 1 / ln(2) + 1 + log_2(5) / 4
    a = (i * 3 * n * tau) / (4 * ln[2]) + 1 + log_2(5) / 4
    a4 = (i * 3 * n * tau) / (4 * ln[2]) + 1 + log_2(5) / 4
    a1 = 1 + log_2(5) / 4
    a2 = (i * 2 * n * tau) / (4 * ln[2]) + 1 + log_2(5) / 4
    a3 = (i * 1 * n * tau) / (4 * ln[2]) + 1 + log_2(5) / 4
    a4 = (i * 3 * n * tau) / (4 * ln[2]) + 1 + log_2(5) / 4

  • @robertbriquet
    @robertbriquet 2 дні тому +3

    It's great but could skip some steps?

  • @MAS1234P
    @MAS1234P 14 годин тому

    Using the definition of logarithm (rather than blindly applying log rules) will make the calculation faster.
    4^2a = 80 =>2a = log80 (base 4). By definition

  • @ahmedchabboubi1395
    @ahmedchabboubi1395 2 дні тому

    Thank you

  • @ChavoMysterio
    @ChavoMysterio 2 дні тому +1

    4ⁿ•4ⁿ=80
    16ⁿ=80
    2⁴ⁿ=2⁴•5
    2^(4n-4)=5
    4n-4=log_2(5)
    4n=4+log_2(5)
    n=1+¼[log_2(5)] ❤

  • @angelnavarrete2300
    @angelnavarrete2300 День тому

    Excelente!!!

  • @pierrettebalazut9407
    @pierrettebalazut9407 2 дні тому

    Sensas ! Tout devient facile avec vous

  • @roguesoftware4free
    @roguesoftware4free 23 години тому

    a=log_16(80)≈1.58

  • @johneverson2433
    @johneverson2433 Годину тому

    You must have taught math at my middle school, you didn’t explain anything that I could understand

  • @AlexanderSemashkevich
    @AlexanderSemashkevich 2 дні тому

    x=log80/2log4=(log16+log5)/4log2=1+log5/4log2
    x≈1+0.699/(4×0.301)≈1903/2204≈1.5806
    Deviation is about 0.0001
    4^(2×1.5806)≈80.026

  • @medium_codezone
    @medium_codezone День тому

    1.58

  • @matzlwien
    @matzlwien 6 годин тому

    4^a*4^a=80
    4^a^2=sqrt80^2
    4^a=sqrt80
    Ln4*a=ln sqrt80
    a= ln sqrt80/ln4
    a= 1,580482
    Thatś it, why do many steps???

  • @aligundogdu5328
    @aligundogdu5328 2 дні тому

    a = (log5/log16) + 1 = 1,58...

  • @anniesworldeverythingsurro8214

    a =1.5805

  • @aminjonimomnazarov167
    @aminjonimomnazarov167 2 дні тому

    TThhaannkk yyoouu