Comparison test for improper integrals example 2, calculus 2 tutorial

Поділитися
Вставка
  • Опубліковано 25 гру 2024

КОМЕНТАРІ • 31

  • @williampattison6628
    @williampattison6628 6 років тому +2

    I need more teachers like you. You explain things a lot better than a large majority of the teachers that I have had in the past

  • @jayyyalldayyy
    @jayyyalldayyy 7 років тому +4

    I've watched a few videos on the comparison test and yours are by far the most helpful ! thank you 😊

  • @mohammedaamir9582
    @mohammedaamir9582 7 місяців тому

    Thanks, amazing teaching!

  • @blackpenredpen
    @blackpenredpen  Рік тому

    check out example 3 ua-cam.com/video/5GP963kPsPE/v-deo.html

  • @andreamonteroso8586
    @andreamonteroso8586 5 років тому +1

    good thing blackpenredpen and youtube exist

  • @juanjosemiguel6966
    @juanjosemiguel6966 7 років тому +14

    I tried to integrate that function, but i could not. I putted into Wolfram Mathematica and the result was longer than expected. Clearly this integral isn't very easy to resolve, true?

  • @blackpenredpen
    @blackpenredpen  Рік тому

    ua-cam.com/video/5GP963kPsPE/v-deo.html

  • @ncedonqeto9107
    @ncedonqeto9107 Рік тому

    What happens when the inequality is false , say the the integral you start with ( the know) is covergent and you work that until you see that the inequality does not hold true , would that mean the improper integral is divergent ?

  • @DestinyQx
    @DestinyQx 7 років тому

    i love your videos! (side note: slight error at 6:10 ? shouldn't it be x^5 ≥ x^5 - 1 ? same conclusion though in the end)

    • @blackpenredpen
      @blackpenredpen  7 років тому +1

      DestinyQx yea. I didn't square both sides tho. I just rewrote the 5/2 power with sqrt lol

    • @DestinyQx
      @DestinyQx 7 років тому

      thanks for videos! i began studying diff eq because of your vids.. maybe one day i'll study linear algebra too

  • @larissa8232
    @larissa8232 4 роки тому +1

    Thank you thank you thank you omg thank you SO much

  • @ladyanne4294
    @ladyanne4294 5 років тому +1

    hey btw you have really helped me alot.thank u

  • @vivellywang4037
    @vivellywang4037 7 років тому +1

    ok,take your time Thanks. Take care

  • @princessmalobola8378
    @princessmalobola8378 4 роки тому +1

    And he's sooo funnny :-)))))!!!

  • @qwerasdfqe
    @qwerasdfqe 6 років тому

    what would you do if the equality check gives you false?

  • @vivellywang4037
    @vivellywang4037 7 років тому

    How do they get linearly independent on (-Infiniti, Infiniti) ? Please upload some videos if you can. If you can't, it's ok. I did research on UA-cam, I couldn't find one good video. Thank you so much tho. Take care. I've been watching your videos since spring 2016. You are the best.

  • @vivellywang4037
    @vivellywang4037 7 років тому +2

    Can you do some differential equations?

    • @blackpenredpen
      @blackpenredpen  7 років тому

      vivelly wang I am uploading, some second order and reduction of orders. What topics did u have in mind?

    • @vivellywang4037
      @vivellywang4037 7 років тому

      blackpenredpen thank you. I'm working on homogeneous second order linearly dependent and linearly independent. I knew all the basic stuff, but some books wrote really hard theorem. I don't understand. It's about f(t)=t^2 if t=0 and g(t)= 2 t^2, if t= 0 are linearly independent on (-Infiniti, +infiniti). I only understand they are linearly dependent on (-infinit, 0) and (0, + Infiniti).

    • @blackpenredpen
      @blackpenredpen  7 років тому

      vivelly wang vivelly wang hi vivelly. It's really late now and I prob won't be able to be in school this weekend to make more videos. But the way to do that is, since t^3 and 4t^4 are linearly independent, thus those two piecewise functions are overall linearly independent.

    • @blackpenredpen
      @blackpenredpen  7 років тому

      Perhaps you have a theorem like this in the book, which says if W(f,g) is not zero at some x_0 on the interval I, then f and g are linearly independent on I

    • @blackpenredpen
      @blackpenredpen  7 років тому

      Thus u can show that W(x^3,4x^4) is not zero on (0 to inf) thus f and g are L.I.

  • @luyandamolala1108
    @luyandamolala1108 2 роки тому

    Wola mzukulu ka Chan

  • @I_make_countless_mistakes
    @I_make_countless_mistakes Рік тому

    i thought it would be 2 instead of 1at 3.15 Since a =2

  • @NotYourAverageNothing
    @NotYourAverageNothing 7 років тому +3

    It has no elementary solution.

  • @呂永志-x7o
    @呂永志-x7o 6 років тому

    我覺得右邊的寫法有點讓誤解:第一條式子並不需要大於等於零,零只是一般來說方便驗證,只要是有限大的數就可以。第二條式子小於零也可以類似地用,只是不等式方向要相反。與第一式相同地,這也不必需是零。

  • @elixiroflife9636
    @elixiroflife9636 3 роки тому

    mu test will be much easier

  • @parthasarker6121
    @parthasarker6121 7 років тому

    Well, you can leave out some details which are obvious in the process