Comparison test for improper integrals ex 3, integral of 1/ln(x) from e to inf, calculus 2 tutorial

Поділитися
Вставка
  • Опубліковано 26 гру 2024

КОМЕНТАРІ • 45

  • @LugiusEX
    @LugiusEX 7 років тому +6

    These videos are extremely helpful especially for this video on comparison test. I understood absolutely everything he said and why he go answers he got. One of the best tutors in the world. Keep it up!!!

  • @yurialexandre4672
    @yurialexandre4672 5 років тому +3

    Thank you very much. You don't know how this video helped me. I understand more with you in English than with my teacher in Portuguese. (Brazil)

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 4 роки тому

    Clear presentation of the topics. Thanks sir. DrRahul Rohtak India

  • @pacolibre5411
    @pacolibre5411 7 років тому +1

    Li(x) is just this function with a different lower bound, so it diverges if Li(x) also diverges. Li(x) is also approximately the prime counting function, and since there are infinitely many primes, Li(x) must go to infinity, therefore, this function diverges. QED.

  • @heinzanderson462
    @heinzanderson462 7 років тому +17

    The integral 1/ln(x)dx is li(x) or?

    • @blackpenredpen
      @blackpenredpen  7 років тому +16

      Yea, but that's not elementary

    • @bernardz2002
      @bernardz2002 7 років тому +4

      they cant be expressed into 'simpler' form / normal functions we know like sin(x) e^3x etc.
      (Well technically you can express them via taylor series but they dont really count because the taylor series may not converges for all values)

    • @DavidHume-Educator
      @DavidHume-Educator 7 років тому +2

      ʃ 1/ln(x)dx from 2 to x = Lix), which approximates PI(x) the number of primes less than or equal to x as x becomes large ; and I find that interesting. Li is well behaved while PI is not, e.g. PI(9)=PI(10)=4; i.e. 2,3,5,7.
      ua-cam.com/video/W7YjgmjDpCE/v-deo.html

    • @willyou2199
      @willyou2199 7 років тому +1

      So why is sin(x) a "'simpler' form / normal functions" while li(x) not?

    • @GhostyOcean
      @GhostyOcean 6 років тому

      Will You sine can be integrated without using special functions. Sine, if manipulated in the right way, can become a non-elementary function when integrated. For example, sin(x)/x is non-elementary because we have no way of expressing the integral with normal functions with a defined endpoint to them. Taylor series are an infinite polynomial and are do not terminate. Although they're very useful and (usually) easier to work with, you eventually have to cut off the series and make it an approximation of the real function.

  • @nomundarigkh5400
    @nomundarigkh5400 7 років тому +1

    I failed my exam last Thursday. But now it seems like I can do all of them with your helping. Thank you.

  • @thomasborgsmidt9801
    @thomasborgsmidt9801 7 років тому +1

    Is "the List" complete is ln(ln(x))

  • @SuperMtheory
    @SuperMtheory 7 років тому +9

    To demonstrate x > lnx, could you have created the function f(x) = x - ln x. And then show that f'(x) is always positive, therefore f(x) is increasing.

    • @lakshaymd
      @lakshaymd 7 років тому

      James Dirig 1-1/x isn't always positive

    • @DerToasti
      @DerToasti 7 років тому +2

      for numbers greater than 1 it is.

    • @lakshaymd
      @lakshaymd 7 років тому +1

      a positive derivative of x-lnx still wouldn't be enough proof. You'll need to show that x>ln x for a specific value and due to positive derivative x>ln x for any x greater than that. There are much simpler proofs.

    • @lakshaymd
      @lakshaymd 7 років тому +1

      a positive derivative of x-lnx still wouldn't be enough proof. You'll need to show that x>ln x for a specific value and due to positive derivative x>ln x for any x greater than that. There are much simpler proofs.

    • @gerboizeYT
      @gerboizeYT 7 років тому

      It is enough. Since f is a growing function, you can say that, for any x greater than 1, f(x)>=f(1)=1>0. Thus, x-ln(x)>0 meaning that x>ln(x).

  • @classiclane4259
    @classiclane4259 3 роки тому

    How do you do this problem with (ln x)^n?

  • @gmallick8345
    @gmallick8345 7 років тому

    sir u r amazing.. sir Dats clear my confusion... Thnx alot sir from a good Indian😃

  • @mokouf3
    @mokouf3 5 років тому

    ln(x) < x for all positive x.
    lim(x→∞)ln(x) = ∞
    That's all we need to know for this problem.

  • @VerSalieri
    @VerSalieri 6 років тому

    I remember we using 1/n and (-1)^n/n as basis for comparison tests between sums (discrete or continuous sums, doesn’t matter) so your list is universal lol

  • @yanoski9
    @yanoski9 6 місяців тому

    why is it not (1/x^-1)????

  • @numbo655
    @numbo655 5 років тому

    For the list you said p has to be positive. But it also has to be greater than 1 right?

    • @gogo-pj2lm
      @gogo-pj2lm 5 років тому

      That list is just abt the order of magnitude for large n. At that point we don't need to pick p>1

    • @numbo655
      @numbo655 5 років тому

      @@gogo-pj2lm But even for large n, ln(x) won't be smaller than x^p if p is e.g. 0.3?

    • @gogo-pj2lm
      @gogo-pj2lm 5 років тому

      Not really. If u evaluate lim ln(n)/n^0.3, u still can get 0. In fact for any +ve power such lim would still go to 0, and that implies ln(x)

  • @NirvanaTm34
    @NirvanaTm34 7 років тому

    how can i draw graph of 1/lnx

    • @justabunga1
      @justabunga1 5 років тому

      If you remember the calculus steps, use the first derivative and set that equal to 0, and see where it’s increasing/decreasing and second derivative where it’s concave up/down. Also, find the find the x- and y-intercepts and the asymptotes. You can verify this on your graphing calculator.

  • @yassinemihoubi4926
    @yassinemihoubi4926 6 років тому

    sir you had made a good

  • @karthikeyasathyam2485
    @karthikeyasathyam2485 5 років тому

    integral 1 to 3 step of π/x
    Solutions plz

  • @tgx3529
    @tgx3529 4 роки тому

    If you take the substitution lnx=y, you see your integral is divergent

  • @LMGaming0
    @LMGaming0 6 років тому

    always helpfull !

  • @saurabhayodhyase
    @saurabhayodhyase 3 роки тому

    Hey sir i am from india
    My question is
    How to intigral of 1/e^tanx dx

    • @ガアラ-h3h
      @ガアラ-h3h Рік тому

      Let u be tan x => int 1/e^u•(u^2+1) => e^u
      •u + int u/e^u du
      Now do integration by parts once more

  • @playch9310
    @playch9310 7 років тому

    If ln(1+x) so what

  • @lucasrafaelrodriguez8709
    @lucasrafaelrodriguez8709 6 років тому +2

    Nadie lo explica en Espanol , tengo que parar a ver este video que no entiendo Ni

  • @Quwertyn007
    @Quwertyn007 5 років тому +1

    Hehehe big dx and small dx

  • @yassinemihoubi4926
    @yassinemihoubi4926 6 років тому

    but know i need your help if You can. my problem is to find the the value of the next sum :Ln(1) +ln(2)+.....+ln(n)

  • @yassinemihoubi4926
    @yassinemihoubi4926 6 років тому

    work

  • @Wiz_Loo
    @Wiz_Loo 6 років тому

    I did not understand haahh