Can you solve this tricky factorial problem?

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ • 196

  • @simmmr.9040
    @simmmr.9040 3 місяці тому +20

    There's no need to factorise the 7! as a product:
    x!=7!×6!=7!×6×5×4×3×2×1=7!×(4×2)×6×5×3=7!×8×3×2×5×3=8!×(3×3)×(2×5)=8!×9×10=9!×10=10! → x=10

  • @stevenmayhew3944
    @stevenmayhew3944 3 місяці тому +55

    Here's another one: 5!x3!=6! because 3!=6 and 5!x6=6!. So, that's two cases: 6!x7!=10! and 3!x5!=6!. Put them together and you get that 3!x5!x7!=10!.

    • @DerekRoss1958
      @DerekRoss1958 3 місяці тому +20

      Also 0!x1!=1!, 1!x2!=2!, 5!x3!=6!, 23!x4!=24!, 119!x5!=120!, 719!x6!=720!, 5039!x7!=5040!, and so on.

    • @pranaypallavtripathi2460
      @pranaypallavtripathi2460 3 місяці тому +3

      great observations guys 😅

    • @2019inuyasha
      @2019inuyasha 2 місяці тому +4

      If you already know 6!×7! = 10! Then you dont need any further steps...

    • @emanuellandeholm5657
      @emanuellandeholm5657 2 місяці тому +5

      @@DerekRoss1958 (n! - 1)! n!= (n!)!. Follows from the recursive definition of the factorial.

    • @DerekRoss1958
      @DerekRoss1958 2 місяці тому +3

      @@emanuellandeholm5657 Yes, I pointed that out in another comment.

  • @hippophile
    @hippophile 3 місяці тому +12

    Here's my solution method:
    Assuming there is an answer, x must have two factors of 5, as both 6! and 7! have obviously both only one factor of 5, so for the 5-factors to balance, you need two in x!. Thus it must be at LEAST 10!
    However, it cannot have a factor of 11 (as 7! has not got far enough for that). So the only possible asnwe is x=10. Then it is a simple matter of checking.

    • @dbly5460
      @dbly5460 2 місяці тому +1

      You mean 11 being prime, I assume.

    • @jpdemer5
      @jpdemer5 2 місяці тому +1

      The "simple matter of checking" amounts to the solution presented here. (Or else a whole lot of multiplying.)

  • @AmitMedhi-zt6lv
    @AmitMedhi-zt6lv 29 днів тому +1

    As a jee aspirant I solved this problem in 1.3 minutes

  • @tamirerez2547
    @tamirerez2547 3 місяці тому +19

    DID YOU KNOW?
    The number of seconds in 6 weeks is 10!

    • @拗拗拗拗
      @拗拗拗拗 2 місяці тому +2

      Well I didn’t know that

    • @xl000
      @xl000 2 місяці тому +3

      This is why time seems to pass so fast sometimes !

    • @reizinhodojogo3956
      @reizinhodojogo3956 Місяць тому

      and 11! = 10! × 11

    • @gmdFrame
      @gmdFrame Місяць тому +2

      Not surprising, as both 3600 seconds in a hour and 24 hours in a day have a ton of divisors

    • @nbooth
      @nbooth Місяць тому +1

      ​@@gmdFrameThe fact that it has the exact right prime factors to the exact right powers entirely by coincidence is astounding.

  • @xyz9250
    @xyz9250 3 місяці тому +4

    A little silly to expand 7! It has to grow from 7!, first thing is to find a 8 from the expansion of 6!

  • @andrewwhitehead2002
    @andrewwhitehead2002 2 місяці тому +1

    Really enjoyed this; thank you…

  • @Paddy-ip7qk
    @Paddy-ip7qk 2 місяці тому +17

    ¿Por qué la gran mayoría de gente que viene aquí a comentar piensa que TODOS los videos de matemática en UA-cam están dirigidos únicamente a grandes eruditos que ya conocen todos los métodos y que son capaces de resolverlos mentalmente? Existen personas que recién se inician en la matemática a quienes les resulta útil una explicación paso a paso y con mucho detalle. Si ese no es tu caso, cierra el video y vete a ver otro, pero no dejes tu mala vibra aquí ni critiques que no lo haya resuelto en 20 segundos. Si en verdad tienen gusto por la matemática, sepan que las tonterías que dicen no ayudan en nada a que esta bella ciencia se siga difundiendo.

  • @markmajkowski9545
    @markmajkowski9545 2 місяці тому +2

    IF there’s an answer it must be at least 7 to get a 7 in the product and at least 10 to get a 5 and not be more than 10 or it has an 11. Nothing wrong with Guess and Check.

  • @prashnaprashant4770
    @prashnaprashant4770 3 місяці тому +12

    Nice warm up as well as easy question.

  • @nichtvonbedeutung
    @nichtvonbedeutung 2 місяці тому

    You can also multiply 7*8*9*10 at the end and then divide the result by 1*2*3*4*5*6*7 and the result should be 1.

  • @KingGisInDaHouse
    @KingGisInDaHouse 3 місяці тому +1

    Multiply the 6! To the other side and you recursively divide until you get one to reverse the factorial.

  • @jollyjoker6340
    @jollyjoker6340 3 місяці тому +1

    6! = 2*3*4*5*6 needs to divide into numbers starting from 8; Remove 2 and 4 leaving 3*5*6, 9; remove 3 and half the 6, leaving 5*2=10. Edit: First time one of these videos has the same solution I came up with!

    • @oahuhawaii2141
      @oahuhawaii2141 2 місяці тому +1

      Actually, he built up on 6! by taking away increasing factors from the expansion of 7! by starting with 7. That's a slow way to solve it. It's better to build up on 7! by taking successive factors from 6! by starting with 8.

  • @AlephThree
    @AlephThree 2 місяці тому +1

    X! will include 7! as it is greater than 7!. So you know 6!=8*9*…*”x”. 6! Is 720 which is 8*9*10 so x=10.

  • @williamBryan-k2e
    @williamBryan-k2e Місяць тому

    I tried to do the same way, ,but extending 7! with 6! - I got the 2*4 = to make 8! and gave up. I did not think to convert 6 to 2*3 and continue - as you did. Good example

  •  14 днів тому

    42 is in here, too! 10! seconds is exactly 6 weeks or 42 days... So beautiful

  • @myfyrmadocjones
    @myfyrmadocjones 3 місяці тому +25

    9:25 Not the only case where a factorial is a multiple of two factorials - you also have 6! = 3! X 5!

    • @rainerzufall42
      @rainerzufall42 2 місяці тому +2

      Also 2! = 1! x 2! 🤣

    • @rainerzufall42
      @rainerzufall42 2 місяці тому +2

      Might be interesting to expand the problem.
      2! x 2! x 3! = 4!
      3! x 5! = 6!
      3! x 4! x 5 = 6!
      5! x 9! x 11 = 12!
      6! x 7! = 10!
      7! x 6! = 10!
      8! x 6! / 8 = 10!
      2! x 3!! = 3!
      7! x 4!! = 8!
      4! x 5!! x 2 = 6!
      4! x 7!! x 2 = 7!
      6!! x 7!! = 7!
      (okay, that last one was easy: (n-1)!! x n!! = n!)

    • @ericwiddison7523
      @ericwiddison7523 2 місяці тому

      There are an infinite number of cases like this of the form n!*(n!-1)!=(n!)! The first few are 1!0!=1!, 2!1!=2!, 3!5!=6!, 4!23!=24!, 5!119!=120!...
      There are also an infinite number of trivial solutions that 0!n!=n! and 1!n!=n!
      Non-trivial solutions to a!b!=c! where a

    • @oahuhawaii2141
      @oahuhawaii2141 2 місяці тому +1

      @rainerzufall42: What is this "n!!" operator? It seems to use only odd or even integers in the product, rather than all the integers, by matching with n being odd or even. If a parser doesn't recognize the double "!", it'll do a factorial of a factorial: (n!)! . Yikes!

    • @quigonkenny
      @quigonkenny 2 місяці тому +2

      There are an infinite number of them.
      (n!-1)!•n! = (n!)!
      For example, 3! = 6, so 5!•3! = 6!, or 5! = 120, so 119!•5! = 120! Every factorial is an integer, so naturally every factorial will equal the final term of a larger factorial.
      6!•7! = 10! is the only one I know of where both multiplier factorials make up multiple terms of the product factorial, though I wouldn't be too surprised if there are others.

  • @manuelgonzales2570
    @manuelgonzales2570 3 місяці тому +2

    Excellent. Thank you!

  • @EduardoPierreMG
    @EduardoPierreMG 3 місяці тому +1

    Outstanding question!

  • @astrolad293
    @astrolad293 3 місяці тому +2

    11 is the smallest prime > 7. So the answer must be 8!.,9!, or 10!. And 6! must be equal to 8, or 8*9 (72), or 8*9*10 (720). 6! is 720, so the answer is 10!.

  • @bogdangarkusha8727
    @bogdangarkusha8727 3 місяці тому +2

    6! = 720. 720/10=72. 72/9=8.
    it means x! = 7!*8*9*10 = 10! therefore, x=10

  • @rainerzufall42
    @rainerzufall42 2 місяці тому +1

    Why do you do the long way? 6 < 7. Use 7! as the base and see that 6! = 8 x 9 x 10 (as a continuation of 1 x 2 x 3 x 4 x 5 x 6 x 7:
    6! has 3 even factors, giving the 8 = 2x2x2. It has two factors of 3, so 9 = 3x3. What's left (!= 1)? The second 2 from 4 and the 5, so we have a 10. Thus x = 10. It was not possible to continue this product otherwise. We knew, that x! starts with 1 x ... x 7. You can't expand it to the left, only to the right: x 8 x 9 x 10... Problem solve with x = 10.

    • @oahuhawaii2141
      @oahuhawaii2141 2 місяці тому +1

      Yeah, it makes sense to build up successively from 7! by taking increasing factors from 6! -- beginning with 8 -- until the remaining factor is 1 (solution found) or the next successive value isn't available (no solution).

    • @oahuhawaii2141
      @oahuhawaii2141 2 місяці тому

      I created a fun case for you. Find x, where: x!*11! = 3!*6!*22! .

  • @Kaurenjalalifarahani
    @Kaurenjalalifarahani 3 місяці тому +1

    Just do 6 factorial multiplied by 7! And that gives you the factorial of 10

  • @prashnaprashant4770
    @prashnaprashant4770 3 місяці тому +9

    Can you make videos on IIT JEE ADVANCE OR MAINS question?

  • @alaasaid6370
    @alaasaid6370 2 місяці тому

    I did it as (x)P(x-6) then i had to find arithmetic sequence of few numbers that can give me the same value of 7! which is 5040, i started with 10 so i had to take 4 numbers coz of the (x-6), so 10 x 9 x 8 x 7 = 5040 therefore X=10

  • @bookert2373
    @bookert2373 3 місяці тому

    x! = x(x-1)…(x-k)(6)(5)(4)(3)(2)(1) =7! for some k so, after dividing x! by 6!, the (x-k) must be 7, so x =7+k. As many have observed, 11 can’t appear in 7!, so k must be 1, 2, or 3. k=1 and 2 are immediately eliminated (since neither 8! nor 9! can equal 7!). This leaves k=3 (ie, x=10) as only option.

  • @archangecamilien1879
    @archangecamilien1879 2 місяці тому +4

    Not that tricky, actually, lol...x! (x being an integer, no gamma function stuff, lol) will be a factorial, only certain numbers can be "factorials", like 1, 2, 6, 24, 120, 720, if I'm not mistaken...try to see which of these is equal to 7*8*...*n for some n, etc...as soon as you "hit" one that is equal to such a product, etc, bingo!, lol...Just try each of them, 7*8, then 7*8*9 until you hit a "factorial" number...

  • @jeffreyluciana8711
    @jeffreyluciana8711 Місяць тому

    Wonderful

  • @Gnowop3
    @Gnowop3 2 місяці тому

    Seeing so many of the same problem floating around in FB, UA-cam, I can even remember the answer immediately as 10!

  • @ManojkantSamal
    @ManojkantSamal 3 місяці тому +1

    X=10, because
    10!=6! × 7×8×9×10
    7×8×9×10=7×2×4×3×3×2×5
    =1×2×3×4×5×(3×2)×7
    =1×2×3×4×5×6×7
    =7!
    As per question
    X!/6!=7!
    (6!×7!)/6!=7!=R. H. S
    There are plural methods to get the answer

  • @thomasvronik6517
    @thomasvronik6517 3 місяці тому +2

    Haha the fly on cam😂😂😂

  • @BN-hy1nd
    @BN-hy1nd 2 місяці тому

    Brilliant 👍🏿

  • @sobekorus1255
    @sobekorus1255 Місяць тому

    Marvellous

  • @oahuhawaii2141
    @oahuhawaii2141 2 місяці тому

    x!/6! = 7!
    x! = 6!*7!
    We see 7! as a good starting point to increase it to 8!, 9!, ... by converting 6! to 8*9*... We do it here:
    6! = 720 = 8*9*10
    x! = 10*9*8*7! = 10!
    x = 10

  • @lucretiusag1767
    @lucretiusag1767 3 місяці тому +2

    Thx a lot

  • @저녘놀
    @저녘놀 2 місяці тому

    Cause 6! mod 5 = 0 and 7! mod 5 = 0,
    x mod 5^2 = 0 and x mod 5^3 != 0 Therefore, x >= 10 and x < 15
    Cause 7! mod 11 != 0,
    x < 11
    So x >= 10 and x < 11
    Therefore, x = 10
    Maybe the fastest proof

  • @peterweusten4251
    @peterweusten4251 2 місяці тому +1

    6! = 720 which is 10x9x8
    x! =6! 7! so
    x! = 10x9x8x7!
    done

    • @Paul_Schulze
      @Paul_Schulze Місяць тому

      Thats the clearest and easiest solution.

  • @dirac17
    @dirac17 3 місяці тому +16

    This literally took me about 5 seconds to solve

    • @stottpie
      @stottpie 3 місяці тому +2

      It took me only two seconds. You're slow.

    • @RWBHere
      @RWBHere 3 місяці тому +1

      @@stottpie I solved it almost instantly, by skipping to the end of the video. 🤪 🤦🏼‍♂

    • @igoranisimov6549
      @igoranisimov6549 2 місяці тому

      Sometimes fast is not good. And it is not what you are thinking. The best one is to be CORRECT.

    • @igorcardosodeabreu8310
      @igorcardosodeabreu8310 2 місяці тому

      Do you thought as me?
      6!×7! must have two multiples of 5 as factors (so we know it's less then 15!), but do not have 11 as a factor. So it must be 10!

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 3 місяці тому +5

    10!=3628800

  • @robert.eduard
    @robert.eduard 3 місяці тому +3

    4! * 23! = 24! and the list goes on... 5! * 119! = 120!

    • @SzabolcsHorváth-r1z
      @SzabolcsHorváth-r1z 3 місяці тому

      can you make a general formula for this?😂

    • @aidenbooksmith2351
      @aidenbooksmith2351 2 місяці тому

      Not all cases apply here, but every implementation of my formula will result in this happening:
      if x! =y-1
      y! = x!y-1!

    • @robert.eduard
      @robert.eduard 2 місяці тому +1

      @@aidenbooksmith2351 there’s a mistake in your “formula”. I’ll let you figure it out on your own!

    • @v.volynskiy
      @v.volynskiy 2 місяці тому

      @@SzabolcsHorváth-r1z x!=(x!)!/(x!-1)!

    • @oahuhawaii2141
      @oahuhawaii2141 2 місяці тому

      @robert.eduard: Well, he has 2 errors.
      For an arbitrary x ∈ ℕ1, we can compute x! and set it to y , and use:
      y! = y*(y - 1)! = x!*(y - 1)! = x!*(x! - 1)! = (x!)!
      1!*0! = 1! = (0!)! = (1!)!
      2!*1! = 2! = (2!)!
      3!*5! = 6! = (3!)!
      4!*23! = 24! = (4!)!
      5!*119! = 120! = (5!)!
      6!*719! = 720! = (6!)!
      7!*5039! = 5040! = (7!)!
      8!*40319 = 40320! = (8!)!
      ...
      This formula doesn't generate:
      6!*7! = 10! or 3!*5! = 6!
      Note that I wrote (x!)! instead of x!! because there's a weird factorial-like operator "!!" that multiplies only the odd or even integers, depending upon x being odd or even. [Check it out on WolframAlpha!]
      If you scan through a table of factorials and can rearrange the factors into a product of a sequence of consecutive integers, then you have a number to use for this form. For example, 5! is 120, which can be factored as 4*5*6 and can follow on 3! to get 3!*5! = 6! . Likewise with 6! , we see it's 720, which can be factored as 8*9*10 and can follow on 7! to get 7!*6! = 10! . This 7! is factored as 7*8*9*10 and follows 6! to get 6!*7! = 10! .
      Anyway, with this pattern of thinking, I found 2 sets of numbers with interesting properties. But rather than show how I created them, I'll pose one of them as a math problem for you to solve.
      Find x, where x! = 3!*6!*22!/11! .

  • @nbooth
    @nbooth Місяць тому

    How often is the ratio of two factorials itself a factorial? That seems exceedingly unlikely. Are there other non-trivial examples?

  • @collegemathematics6698
    @collegemathematics6698 3 місяці тому

    I solved it mentally before i run the video. Thanks for tha challenge ❤

  • @paulgoodman5187
    @paulgoodman5187 2 місяці тому +1

    This was too easy. 6! is 720 (you get to know most of these lower factorial values), which is also equal to 8x9x10 and that stacks nicely on 7! We readily wind up with X=10.

  • @KaivalyaChess
    @KaivalyaChess 3 місяці тому +1

    very nice sir

  • @krrishrohilla2945
    @krrishrohilla2945 2 місяці тому +2

    i did it in first attempt

  • @madankundu6035
    @madankundu6035 2 місяці тому +1

    x!= 7! 6! = 7! 6 x 5 x 4 x 3 x 2 = 7! 8 x 6 x 5 x 3 = 8! 9 x 10 = 10!

  • @thakurfamily9669
    @thakurfamily9669 2 місяці тому +1

    It's obv x = 10

  • @krwada
    @krwada 3 місяці тому +3

    It is not that difficult. 7! = 7 x 6! ... You just need to do a prime factorization of 6! and work your way up. Prime Factorization of (6!) = 2x3x5x2x2x3x2
    Start working way up
    x8 = cross out three (2)
    x9 = cross out two (3)
    x10 = cross out two (2) and five (5)
    You will see that at this point all factors of 6! are crossed out. That is 8x9x10 = 6!
    Therefore, x = 10

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 3 місяці тому +8

    (10!)/(6!)=5040=7! x=10

    • @Floag
      @Floag 3 місяці тому +1

      You can’t use a calculator in a math competition

  • @mandolinic
    @mandolinic 3 місяці тому +2

    You can solve this iteratively in a minute or two without needing factors (or even a calculator):
    7! = 5040 (which most maths students know by heart, but if not then it's a quick calculation)
    By inspection: X!/6! = 7 . 8 . 9 . ..... . X
    So, just start multiplying: 7 x 8 = 56 ; 56 x 9 = 504 ; 504 x 10 = 5040 and the answer is found! X = 10.
    And that's it. Job done. Question answered. No need for anything more complex.
    If in an exam, use the time saved to answer another question.

    • @ReasonableForseeability
      @ReasonableForseeability 3 місяці тому

      Yes! I solved it similarly: 7! * 720 = x! so
      720 = 8*9*...*x and x = 10.

    • @ahmedmasir7278
      @ahmedmasir7278 3 місяці тому +1

      It's a math Olympiad question you have to show the way you solve it , it is not about the result it's about the method

  • @marcinbulandra3119
    @marcinbulandra3119 Місяць тому

    Another fun fact is that 10! seconds is exactly 6 weeks.

  • @vencik_krpo
    @vencik_krpo 3 місяці тому +10

    This wasn't tricky, I didn't even need to write it down. Take 2 x 4 from the 6!, that gives you 8! on the right hand side. You're left with 3 x 5 x 6. That's 90 = 9 x 10. That gives you 10! on the right hand side, equal to x!, ergo x = 10.

  • @molgera3
    @molgera3 2 місяці тому

    Anyone else nearly get jumpscared by the sudden appearance of a fly right as he was writing "7! = 7!"?

  • @vishalmishra3046
    @vishalmishra3046 3 місяці тому +1

    x! / 6! = 7! so x! / 7! = 6! so x! / 8! = 6 x 5 x 3 so x! / 9! = 2x5 so x! / 10! = 1, so x = 10.

  • @DerekRoss1958
    @DerekRoss1958 3 місяці тому +1

    By definition y! = y * (y - 1)!, for any positive integer y.
    So if y = x! then (x!)! = x! * (x! - 1)! for any positive integer x.
    Which all implies that there are an infinite number of cases where a! = b! * c!

  • @Bizmyurt
    @Bizmyurt 3 місяці тому

    You can also say 6!^2 x 7

  • @arikahn3907
    @arikahn3907 2 місяці тому

    Note that answer must be less than 11 since 11 is prime and not a factor in 7!

  • @gnanadesikansenthilnathan6750
    @gnanadesikansenthilnathan6750 2 місяці тому

    Got this with hit and trial

  • @markotesla2016
    @markotesla2016 2 місяці тому

    can you just remove the factorial and multiply 6x7 to find x?

  • @zedzilla
    @zedzilla Місяць тому

    Did 7! × 6! then I "built" the numbers 8, 9, 10 from what was on the page

  • @boguslawszostak1784
    @boguslawszostak1784 3 місяці тому

    Easy peasy.
    It is obvious that in the prime factorization of 6!⋅7!, there are two factors of 5, one factor of 7, and there is no factor of 11. Therefore, the only candidates for the solution is x=10
    So it is enough to check. 6!*7!=10!

  • @verites1491
    @verites1491 3 місяці тому

    6!=2x3x4x5x6=8x3x5x6=8x3x5x2x3 =8x9x2x5=8x9x10 so x!=10! and x=10

  • @maryjay7833
    @maryjay7833 3 місяці тому

    Thanks

  • @joetyson3216
    @joetyson3216 2 місяці тому

    fun trick math question: If 6a x 7a = 10a, what is a?

  • @creanero
    @creanero 2 місяці тому

    I just multiplied up 6! to get 720 and divided it by 8 and 9 to get 10 which told me it went to 10!

  • @jwil4286
    @jwil4286 2 місяці тому

    Is there an inverse gamma function?

  • @pranaypallavtripathi2460
    @pranaypallavtripathi2460 3 місяці тому

    I sort of cheated and did hit and trial using calculator starting from 9! and got the answer. But nice question.

  • @abhishekpatil1063
    @abhishekpatil1063 2 місяці тому

    I solved it by calculating 7*(6!)^2which is same as 10 ! .So X=10.

  • @neerajkumarjha1417
    @neerajkumarjha1417 2 місяці тому

    x!= x(x-1)! = 7!×(7-1)!
    Comparing
    x=7

  • @winterswarrior2064
    @winterswarrior2064 3 місяці тому

    Stupid Longway
    X!/6! = 7!
    X! = 7!6!
    = 7 x (6!)²
    = 3,628,800
    Since 3,628,800 is a factorial product and we know that X! = X•(X-1)•(X-2)•....•2•1, we can simply divide the X! = 3,628,800 repeatedly by natural numbers starting at 2 untill the quotient is 1.
    At which point we can count the steps and find that X = 10, and 10! = 3,628,800

  • @khaledalsaoub6760
    @khaledalsaoub6760 3 місяці тому

    Great

  • @НатальяСардачук
    @НатальяСардачук 2 місяці тому

    👌👍

  • @nspheadshot9419
    @nspheadshot9419 3 місяці тому

    Me who find it pretty easily by a method mostly similar to trial and error method

  • @sergeyvarin8434
    @sergeyvarin8434 3 місяці тому

    10 ясно сразу. Просто 5 должно быть кратно. Следующее за 5 10. Все.

  • @Математиканапять
    @Математиканапять 2 місяці тому

    Интересно, есть те, кто не смог это решить устно за несколько секунд? Как же сильно у нас отличантся уровень математического образования..

  • @KennethDuda
    @KennethDuda 2 місяці тому

    This is an olympiad question?! I solved it in 30 seconds. For there to be any answer, x! = 7! * 6!, so 6! must be 8 times 9 times ... up to something.
    Is 6! = 8? no.
    Is 6! = 8*9? no.
    Is 6! = 8*9*10? Well, yes.
    So x = 10.
    Gees

  • @CharlesChen-el4ot
    @CharlesChen-el4ot 3 місяці тому

    6 ! = 10 * 9 * 8
    X ! = 10 !

  • @ОлегПолканов-д1н
    @ОлегПолканов-д1н 2 місяці тому

    Every second simpliest question marked as Olympiad. Really? Could you provide a link to what Olympiad exactly?

  • @Eldirel
    @Eldirel Місяць тому

    You just need to learn how to write the number seven by hand so that it looks different from the number one.

  • @guitartommo2794
    @guitartommo2794 3 місяці тому

    x! = 7! x 6!
    6! = 1 x 2 x 3 x 4 x 5 x 6
    2 x 4 = 8
    3 x 5 x 6 = 3 x 5 x 2 x 3 = 9 x 10
    So 6! = 8 x 9 x 10
    So x = 10

  • @SanePerson1
    @SanePerson1 3 місяці тому

    Since 7! has 7 as a prime factor and 14! is far too large to be x!, x! has to be (6!)×7×8×9×10, or there is no solution ... all the prime factors in 6! are there: one needs four prime factors of 2 - three of them are in 8 and one is in 10, two prime factors of 3 come from 9, and the prime factor of 5 comes from 10.

    • @ericwiddison7523
      @ericwiddison7523 2 місяці тому

      I thought of it as 7*8*...*x=7! (this is x!/6!, or the remaining factors of x! after the 6! factors are removed). Looking at it this way, the product must contain a multiple of 5 and cannot contain 11, so it must be at least 10 and less than 11. The only possible solution is therefore x=10.

  • @jkbrahim9017
    @jkbrahim9017 3 місяці тому

    10!

  • @jean-claudecaillot1290
    @jean-claudecaillot1290 3 місяці тому +1

    X = 10

  • @jeffweber8244
    @jeffweber8244 2 місяці тому

    Video is twice as long as needed, but cool math puzzle.

  • @KpoXa12
    @KpoXa12 3 місяці тому

    👍

  • @fibrahim4171
    @fibrahim4171 3 місяці тому

    🎉🎉🎉🎉

  • @ShotBoy670
    @ShotBoy670 2 місяці тому

    1! = 1!*1!

  • @kpdywo848
    @kpdywo848 3 місяці тому +2

    Easy, 7!*6! =x= 3628600 you divided by 2 then by 3....up to 10 where the result is 1. so x=10.

  • @kylehines3185
    @kylehines3185 3 місяці тому

    42

  • @remoteadministrator4036
    @remoteadministrator4036 2 місяці тому

    10

  • @maxaafbackname5562
    @maxaafbackname5562 3 місяці тому

    There are 10! seconds in a week.

  • @ankeunruh7364
    @ankeunruh7364 3 місяці тому

    The only tricky thing: x is not 10!, but 10.

  • @ЭнтониГон-п7п
    @ЭнтониГон-п7п 2 місяці тому

    I found solution in 2 minutes

  • @ToanPham-wr7xe
    @ToanPham-wr7xe 3 місяці тому

    😮

  • @animadas6785
    @animadas6785 3 місяці тому

    It took me Just 20 sec

  • @richardmullins44
    @richardmullins44 Місяць тому

    good work. ( I got it wrong).

  • @darmasalla8015
    @darmasalla8015 3 місяці тому

    An easy one. Takes 3 minutes to solve.

  • @sfbefbefwfvwfvsf2722
    @sfbefbefwfvwfvsf2722 3 місяці тому

    why india math olympiad so easy? or is this for primary school level?

  • @yazakariae
    @yazakariae 3 місяці тому

    هذا اسمه رياضيات الخشيبات.

  • @kurzackd
    @kurzackd 2 місяці тому +1

    you didn't really "SOLVE" this though... You just said "OK, let's try 10 as an example..." and then proved that it works...
    But that was not really a "SOLUTION" ... -_-
    .