Can you solve this tricky exponential equation?

Поділитися
Вставка
  • Опубліковано 12 лис 2024

КОМЕНТАРІ • 51

  • @Nikos_Iosifidis
    @Nikos_Iosifidis 2 місяці тому +14

    Although the solution result is correct, there is some error in the solution process. The mistake is that a relationship of the form a^a=b^b does not necessarily result in a=b because the function f(x)=x^x is not 1-1
    For example, the equality a^a=(1/2)^(1/2) is true for both x=1/2 and x=1/4
    The equation (x^3)^(x^3)=0.9 has two roots: x1=0.31095 and x2=0.96123
    For more details see video 26 at ua-cam.com/video/QtlO6xEARgo/v-deo.html
    on my channel named L+M=N - Maths For Everyone
    Also verification is not necessary. The solution procedure ensures that the value x=6^(1/3) is a root of the equation.

    • @alexsilaghi6747
      @alexsilaghi6747 2 місяці тому +1

      dude doesnt know what he is doing, just uses memorized rules step by step, could be ai for all we know
      x to the x is a highly complicated function that requires a year worth of study and the concept of infimum and supremum

    • @ReasonableForseeability
      @ReasonableForseeability 2 місяці тому

      It's worse. If you listen to the audio at 05:00 , "between the lines" he implies that if a^b=c^d then a=c or b=d. He deduces that a=6 or a=6, hence a=6.

    • @mameahmed3758
      @mameahmed3758 2 місяці тому

      So what

    • @oahuhawaii2141
      @oahuhawaii2141 2 місяці тому +1

      Lambert function.

  • @nikolayguzman331
    @nikolayguzman331 2 місяці тому

    Clear and excellent as usual!

  • @ilikemath14243-masterfail
    @ilikemath14243-masterfail 2 місяці тому +1

    The other two imaginary solutions is
    x=-(³√3/2^(2/3))±(i3^(5/6)/2^(2/3))
    All you need is to -6 from both sides and present 6 like (³√6)³ and solve equation x³-(³√6)³=0
    x³-y³=(x+y)(x ²-xy+y²)

    • @oahuhawaii2141
      @oahuhawaii2141 2 місяці тому

      Why not write them from the polar form r∠θ directly converted to r*(cos(θ) + i*sin(θ)) form? The cube roots are easily found for the polar form, which is converted into Cartesian form via the r*cis(θ) expansion.
      With x³ = 6, we have:
      x = ³√6, ³√6*(-1 ± i*√3)/2
      That's ³√6 times the 3 cube roots of 1 .
      But if you go that route, then there are infinite other complex roots for nⁿ = 6⁶. So, you get to find the 3 cube roots of each of those infinite solutions for n. Look up the Lambert function to get an idea of what this means.

    • @ilikemath14243-masterfail
      @ilikemath14243-masterfail 2 місяці тому

      @@oahuhawaii2141 pretty interesting

  • @gelbkehlchen
    @gelbkehlchen 2 місяці тому

    Solution:
    x^(x³) = 36 |()³ ⟹
    [x^(x³)]³ = (6²)³ ⟹
    (x³)^(x³) = 6^6 |The same operations are done with (x³) on the left side of the equation as with 6 on the right side of the equation, therefore it must be:
    x³ = 6 |∛() ⟹
    x = ∛(6) ≈ 1,8171

  • @oahuhawaii2141
    @oahuhawaii2141 2 місяці тому

    x^(x³) = 36 = 6²
    (x^(x³))³ = (6²)³
    (x³)^(x³) = 6⁶
    x³ = 6 { skip Lambert func. and complex numbers }
    x = ³√6

    • @oahuhawaii2141
      @oahuhawaii2141 2 місяці тому

      With x³ = 6 , we have:
      x = ³√6, ³√6*(-1 ± i*√3)/2
      That's ³√6 times the 3 cube roots of 1 .
      But if I go that route, then there are infinite other complex roots for nⁿ = 6⁶. So, I get to find the 3 cube roots of each of those infinite solutions for n. Look up the Lambert function to get an idea of what this means.

  • @EvanEscher
    @EvanEscher Місяць тому

    36=((6^(1/3))^6
    6=((6^(1/3))^3
    Therefore x = 6^(1/3)

  • @rvqx
    @rvqx 2 місяці тому +13

    x³=6 is a cubic equation, so it gives 3 solutions. Why you consider only 1 of them?

    • @bernardthedisappointedowl6938
      @bernardthedisappointedowl6938 2 місяці тому +6

      He said at the end he wasn't considering the complex roots - though once you know the real root, you can divide through and get a solvable quadratic -

    • @just_another_person_who_li4675
      @just_another_person_who_li4675 2 місяці тому +5

      I’ll try solving for them
      x^3 = 6
      Subtract 6 from both sides
      x^3 - 6 = 0
      It’s in difference of cubes form, so let’s factor it in differnce of cubes
      (x - cbrt6)(x^2 + xcbrt6 + (cbrt6)^2) = 0
      Discard the real case since it was already solved, solve the complex one.
      x^2 + xcbrt6 + (cbrt6)^2 = 0
      Use the quadratic formula
      x = (-(cbrt6) +- sqrt((cbrt6)^2 - 4(1)((cbrt6)^2)))/2(1)
      x = (-cbrt6 +- sqrt(cbrt6 - 4((cbrt6)^2)))/2
      x = (-cbrt6 +- isqrt(cbrt6 + 4((cbrt6)^2)))/2
      We can clean this up a little bit
      x = (-cbrt6 +- isqrt(cbrt6(1 + 4cbrt6)))/2
      My answer looks a little different than Wolfram’s

    • @kyintegralson9656
      @kyintegralson9656 2 місяці тому +4

      @@just_another_person_who_li4675 You made a mistake in the 2nd line of "x=...".
      Should get
      x=(-1±i√3)·6^(⅓)/2

    • @rvqx
      @rvqx 2 місяці тому +2

      I see , it`s quite a job to find the other two solutions. Even more if you want to check if they are okay. That`s probably the reason he did not consider them.

    • @Doller_
      @Doller_ 2 місяці тому +1

      It was too complex for the purpose of the video

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 місяці тому +2

    6^6 3^2^3^2 1^13^2 32(x ➖ 3x+2).

  • @bernardthedisappointedowl6938
    @bernardthedisappointedowl6938 2 місяці тому +2

    Clearly these puzzles are helping - actually got there today :)

  • @Psykolord1989
    @Psykolord1989 2 місяці тому

    Before watching: (a^m)^n = a^(mn).
    So, we will cube both sides. This gives us:
    x^(3x^3) = (x^3)^(x^3) = 36^3 = (6^2)^3 = 6^6.
    So, (x^3)^(x^3) = 6^6.
    Ergo, x^3 = 6, and thus...
    x = 6^(1/3).

  • @habibsabzezar6846
    @habibsabzezar6846 Місяць тому

    Thank you so much for your work my only suggestion is that people who are interested in math subjects have family good knowledge of math work so you may want to go faster and skip too much explanation of every item . That way we get to the end of solution much faster . Your work is very much appreciated

  • @GiovanniMascellaro
    @GiovanniMascellaro 2 місяці тому

    Amazing! Bravo!

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 місяці тому +2

    X^X^3=36 X=Surd[6,3]

  • @XTamim-rw8ux
    @XTamim-rw8ux 2 місяці тому

    Thanks😊

  • @josemangue7031
    @josemangue7031 2 місяці тому

    Thank you very much

  • @BN-hy1nd
    @BN-hy1nd 2 місяці тому

    Brilliant. Some of the comments below are trying to rubbish this excellent solution. Ignore them. Well done from an ordinary folk😅

  • @peterhenhack5665
    @peterhenhack5665 2 місяці тому +1

    Solved with Lambert w function

  • @alexuserectus1607
    @alexuserectus1607 2 місяці тому

    Nice!

  • @ChrisSquaredTwo
    @ChrisSquaredTwo 2 місяці тому

    Thé initial formula is ambiguous
    X pow x pow 3 could be
    Either x pow (x pow 3)
    Or (x pow x) pow 3
    You should set the () correctly at first

    • @ReasonableForseeability
      @ReasonableForseeability 2 місяці тому

      Convention: a^b^c *always* means a^(b^c).
      See en.wikipedia.org/wiki/Exponentiation under *Identities and properties*

    • @ChrisSquaredTwo
      @ChrisSquaredTwo 2 місяці тому

      @@ReasonableForseeability thank you, I didn’t know that

    • @oahuhawaii2141
      @oahuhawaii2141 2 місяці тому

      That's because if a^b^c is interpreted as (a^b)^c , that's equivalent to (aᵇ)ᶜ and aᵇᶜ , which is easier to write than a^b^c .

  • @shadowwalkers-cp9td
    @shadowwalkers-cp9td 2 місяці тому +1

    can we also solve his using the super log function?

  • @RishikeshPandey-s1e
    @RishikeshPandey-s1e 2 місяці тому

    Please solve 2 power x + x = 5

  • @prime423
    @prime423 2 місяці тому

    This is a cubic equation!1Therefore three solutions!!

    • @jankowalski6145
      @jankowalski6145 Місяць тому

      Or one triple solution, anyway its not polynomial equatiin senso stricte

  • @ИринаРзаева-ф2с
    @ИринаРзаева-ф2с 2 місяці тому +1

    Ответ - 12.

  • @foeva__l
    @foeva__l 2 місяці тому +3

    is this stuff a joke or is it real?

    • @thunderpokemon2456
      @thunderpokemon2456 2 місяці тому +2

      Its real dude

    • @oahuhawaii2141
      @oahuhawaii2141 2 місяці тому +1

      There are infinite other solutions, but they're all complex numbers.

  • @RudiHoffmann-lq2vj
    @RudiHoffmann-lq2vj 2 місяці тому

    I'm the 100th liked in the video