Oxford University Admission Exam Question

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 8

  • @hafeezrehman8692
    @hafeezrehman8692 День тому +1

    Nice 👍

    • @superacademy247
      @superacademy247  День тому

      Thanks for the appreciation! 😊💕I'm glad you enjoyed it! 💯😁

  • @miketseng9253
    @miketseng9253 7 годин тому +1

    we know that 2^y is non-zero real number, so we let 2^x - 2^y = 2^y(2^x/2^y - 1) since the second equaiton shows that x-y=2; we have 2^y(2^2 - 1) = 3*2^y; as the first equation shows, it's equal to 4, we have 3*2^y=4 i.e. 2^y=4/3; we take log base 2 on both side, log2^y=log4/3 i.e. ylog2=log4-log3 i.e. y=2-log3, and as second equation shows, x=2+y, we have x=2+(2-log3)=4-log3.

  • @EC4U2C_Studioz
    @EC4U2C_Studioz День тому

    I don't think you needed to use the power rule for logs as it’s implied from canceling the base with the log of the same base leaving with whatever is in the exponent on one side of the equation.

  • @farancient
    @farancient День тому

    x-y = 2, x = 2 + y
    2^(2+y) - 2 ^y = 4
    2^y * (2^2 - 1) = 4
    2^y = 4/3
    y = (log 4-log3) / log2 = 0.4150
    X = 2.4150

  • @davidshen5916
    @davidshen5916 День тому

    4=2^X-2^Y=2^Y(2^(X-Y)-1)=2^Y(2^2-1)=3*2^Y,2^Y=4/3, Y=LOG(4/3)/LOG(2)=2-LOG(3)/LOG(2),X=4-LOG(3)/LOG (2)

  • @nikolayplatnov5148
    @nikolayplatnov5148 22 години тому

    Oxford admission to what ? To the "course of equity and verieties " 😂😂😂

  • @ChavoMysterio
    @ChavoMysterio 13 годин тому

    2^x-2^y=4
    x-y=2 -----> y=x-2
    2^x-2^(x-2)=4
    2^x-¼(2^x)=4
    4(2^x)-2^x=16
    3(2^x)=16
    2^x=⅓(2⁴)
    2^(x-4)=⅓
    x-4=log_2(3^-1)
    x-4=-log_2(3)
    x=4-log_2(3) ❤
    y=4-log_2(3)-2
    y=2-log_2(3) ❤