Can you Pass Stanford University Admission Exam ? | Find a=? & b=?

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 6

  • @ΝίκοςΖαριφόπουλος
    @ΝίκοςΖαριφόπουλος Місяць тому +3

    Since you have found both the Product and the Sum of a,b you can say that a,b are the roots of t^2-S*t+P=0. Or you can avoid finding the Product at all and just substitute directly the a= -1-b (or b=-1-a) on any of given equations, a^2=b+183==>a^2=-a-1+183a^2+a-182=0 (or b^2+b-182=0). So many unnecessary steps are more tiring than helpful....

  • @EMMANUELSOSU-hw3dm
    @EMMANUELSOSU-hw3dm Місяць тому +1

    Such a nice work... good job

  • @YAWTon
    @YAWTon Місяць тому

    This is very easy: if a=b, then a^2-a-183=0. Solve using the formula for quadratic equations to obtain two solutions a=(1+√733)/2 and a=(1-√733)/2. If a not equal b: subtract the second equation from the first to obtain
    a*2-b^2=b-a. Divide both sides by (a-b):
    a+b=-1, therefore b=-(a+1). Replace b by -(a+1) in first equation:
    a^2+a-182=0. Solve using formula for quadratic equation ==> a=13, b=-14 or a=-14, b=13.
    As shown in the clip, more convoluted solutions are possible too...

  • @kennethkan3252
    @kennethkan3252 Місяць тому

    a^2=b+183
    b^2=a+183
    a=奇數,b=偶數
    a^2=1mod8
    b^2
    =4 or8mod8
    a^2=b+183
    1mod8
    =-(6mod8)+7mod8
    b=-(6mod8)
    b=-14
    a^2=-14+183
    a^2=169
    a=+-(13), b=-14
    b=+-(13), a=-14
    a=+-(14), b=13
    b=+-(14), a=13

  • @key_board_x
    @key_board_x Місяць тому

    (1): a² = b + 183
    (2): b² = a + 183
    (1) - (2)
    a² - b² = (b + 183) - (a + 183)
    (a + b).(a - b) = b + 183 - a - 183
    (a + b).(a - b) = b - a
    (a + b).(a - b) - (b - a) = 0
    (a + b).(a - b) + (a - b) = 0
    (a - b).[(a + b) + 1] = 0 → where: a ≠ b → (a - b) ≠ 0
    a + b + 1 = 0
    a + b = - 1 ← equation (3)
    (1) + (2)
    a² + b² = (b + 183) + (a + 183)
    a² + b² = b + a + 366 → recall (3): a + b = - 1
    a² + b² = 365 ← equation (4)
    From (3):
    a + b = - 1
    (a + b)² = 1
    a² + b² + 2ab = 1 → recall (4): a² + b² = 365
    365 + 2ab = 1
    2ab = - 364 ← equation (5)
    (a - b)² = a² + b² - 2ab → recall (4): a² + b² = 365
    (a - b)² = 365 - 2ab → recall (5): 2ab = - 364
    (a - b)² = 365 + 364
    (a - b)² = 729
    a - b = ± 27 ← equation (6)
    First case: a - b = 27
    a - b = 27 → recall (3): a + b = - 1
    a + b = - 1
    --------------------------------------------Sum
    2a = 26
    → a = 13
    Second case: a - b = - 27
    a - b = - 27 → recall (3): a + b = - 1
    a + b = - 1
    --------------------------------------------Sum
    2a = - 28
    → a = - 14