Galois theory: Discriminants

Поділитися
Вставка
  • Опубліковано 2 січ 2025
  • This lecture is part of an online graduate course on Galois theory.
    We define the discriminant of a finite field extension, ans show that it is essentially the same as the discriminant of a minimal polynomial of a generator. We then give some applications to algebraic number fields.
    Corrections: On the first sheet A^2 should be det(A)^2
    On sheet 5 at 11:00 there are some sign errors on the bottom right: the polynomial should be b^3-b-1 with discriminant -23

КОМЕНТАРІ • 7

  • @anthonymurphy5689
    @anthonymurphy5689 4 роки тому +9

    Example at 11:00 looks wrong? Discriminant of second poly is also -31, not 23. Fields are isomorphic via b=-a.

    • @mmereb
      @mmereb 4 роки тому +5

      I guess he wanted b^3-b+1 or something like that

    • @anthonymurphy5689
      @anthonymurphy5689 4 роки тому +5

      @@mmereb yep. Great series of lectures overall though.

    • @mmereb
      @mmereb 4 роки тому +3

      @@anthonymurphy5689 definitely

  • @m322_yt
    @m322_yt 4 роки тому +3

    thank you, these uploads are coming at the perfect time.

  • @constantijndekker8343
    @constantijndekker8343 4 роки тому +8

    At minute 2, I think the lecturer meant to write “det(A)^2” instead of A^2.

    • @m322_yt
      @m322_yt 4 роки тому +2

      yes, I was puzzled there as well