Mordell-Weil theorem

Поділитися
Вставка
  • Опубліковано 4 лют 2025

КОМЕНТАРІ • 29

  • @caspermadlener4191
    @caspermadlener4191 9 місяців тому +35

    When you upload, I will drop everything to watch these videos :)

  • @kumargupta7149
    @kumargupta7149 9 місяців тому +8

    Person like you are uploading it is really pleasure to see. ❤❤

  • @aziz0x00
    @aziz0x00 9 місяців тому +25

    Drake K-Dot beef: ❌️
    The best prof dropping new vid: 🎉🎉🎉❤

    • @Loots1
      @Loots1 9 місяців тому +4

      Tryna strike a chord and it's probably a-minooooooooooooooooooooooooooooooooooooooooooooooooooor

  • @Yashhh02
    @Yashhh02 7 місяців тому

    Prof thank you so much for your contributions for ppl who can't afford expensive courses.

  • @giupeloverofthestars
    @giupeloverofthestars 9 місяців тому +10

    Thank you professor

  • @peterg2836
    @peterg2836 8 місяців тому +1

    Just a comment about the history. I have NOT read any of the original sources at all, so definitely 'fwiw', but: I had always been under the impression that Mordell had 'only' dealt with the rational points on an e.c. over the rationals, and that Weil introduced the machinery to handle a.v.s over number fields - this seems to match Wikipedia's description of the history, and does match Wolfram World's "... For elliptic curves over the rationals Q, the group of rational points is always finitely generated [...] was proved by Mordell (1922-23) and extended by Weil (1928) to Abelian varieties over number fields." Meanwhile, Manin's Appendix II of Mumford's AV's claims that Lang's contribution was to deal with the case of the base field being of finite type over the prime field. On the other hand, some of the internet believes that Neron did this...

  • @FractalMannequin
    @FractalMannequin 9 місяців тому +5

    What a coincidence, I'm studying elliptic curves these days.
    11:53 "If we multiply by a positive integer that's an isogeny". I don't get this. The map 2× : E(Q) → E(Q) in general sholdn't be surjective since the Weak Mordell theorem states E(Q)/2E(Q) is only finite, not zero.

    • @willnewman9783
      @willnewman9783 9 місяців тому +5

      The multiplication by 2 map is surjective on "the entire elliptic curve," but not on the rational points.
      For any point p on E, there is another point q on E with 2q=p, but we cannot guarantee q is rational if p is.

    • @FTsandbag
      @FTsandbag 9 місяців тому +2

      Any nonzero morphism is surjective, but only on the algebraic closure.

    • @mm18382
      @mm18382 9 місяців тому

      Another question: in 3:28, why E(Q) finitely generated implies E(Q)/2E(Q) finite?

    • @willnewman9783
      @willnewman9783 9 місяців тому +3

      @@mm18382 If A is generated by a1,a2,....,an, then A/2A is generated by [a1],[a2],....,[an]. But now [ai] has order 2, and so there are at most 2^n different elements in A/2A, namely
      0
      [a1],[a2],....,[an],
      [a1]+[a2],[a2]+[a3],....,[a(n-1)]+[an],
      [a1]+[a2]+[a3],......
      ....
      [a1]+[a2]+....+[an]

    • @mm18382
      @mm18382 9 місяців тому

      Thanks for the reply, I don't agree, though, because A (and crucially A/2A) need not be commutative
      So a priori you can have an infinite sequence [a1], [a1]+[a2], [a1]+[a2]+[a1], ...
      Edit: E(Q) is commutative 😃

  • @davidwagner6116
    @davidwagner6116 9 місяців тому +3

    Mathematics videos for mathematicians. Thank you, Sir!

  • @knight3481
    @knight3481 9 місяців тому +1

    Woah! I was looking for something like this because Mordel-Weil has some applications to F theory but was not able to understand it. This will definitely help.

  • @dwellinginshadows
    @dwellinginshadows 8 місяців тому

    Hey professor, if you're reading this, do you plan on covering Graph Theory at all? If you have any insights on this topic I'd love to hear them.

  • @premkumar-s1
    @premkumar-s1 9 місяців тому +1

    Yes professor please upload from very basic level too. We want such series from you. Some of them very advanced to understand.

  • @migarsormrapophis2755
    @migarsormrapophis2755 9 місяців тому +6

    yeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

  • @JoeMama-ws2kx
    @JoeMama-ws2kx 9 місяців тому +1

    I’m sorry guys, I don’t know where else to ask this and y’all seem pretty smart, so
    Could you interpret F(a) in the FTC the following way: Let's say G(T) is the function that "tracks" the area of f(x) from a point "a" exactly so G(a)=0. Let's say F(T) is some antiderivative of f(x). Then F(T)=G(T)+C.
    Then, G(T)=F(T) -C. But at point "a" we get:
    G(a) =F(a) -C F(a)=С.
    So therefore G(T)=F(T)-F(a)???
    So F(a) just happens to be that constant C that separates F(T) and G(T) because of the fact that G(a)=0?

  • @abhisheksoni9774
    @abhisheksoni9774 9 місяців тому +2

    Prof. Do you teach from very basics ? Please
    I tried watching Group Theory lectures, they were very advanced for me.

    • @aurinkona
      @aurinkona 9 місяців тому

      it would behoove you to google 'fields medal'

    • @JamesBlevins0
      @JamesBlevins0 9 місяців тому +1

      Try studying one of
      - Beachy & Blair's "Abstract Algebra" or
      - Herrmann & Sally's "Number, Shape, & Symmetry" or
      - Birkhoff & MacLane's "Modern Algebra",
      and then rewatch his group-theory video.
      You might also like to look at two beautiful books:
      - Niven, Zuckerman, and Montgomery, "Introduction to Number Theory" or
      - Silverman & Tate's "Rational Points on Elliptic Curves" (based on lectures to [undergraduate] students at Haverford or Swarthmore, I believe).
      If you have a masochist kink, try Serge Lang's "Algebra".

  • @yukihirotaschchen3929
    @yukihirotaschchen3929 7 місяців тому

    ich liebe dich

  • @AndrewZeng-m1k
    @AndrewZeng-m1k 9 місяців тому

    Poggers