A Nice Algebra Problem | Math Olympiad | Can you solve it for x?

Поділитися
Вставка
  • Опубліковано 17 січ 2025

КОМЕНТАРІ • 15

  • @stpat7614
    @stpat7614 17 днів тому +5

    With complex roots (I hope this is correct):
    8^x - 2^x = 120
    (2^3)^x - 2^x = 120
    2^(3x) - 2^x = 120
    2^(x*3) - 2^x = 120
    (2^x)^3 - 2^x = 120
    Let u = 2^x
    u^3 - u = 120
    u^3 - u - 120 = 120 - 120
    u^3 - u - 120 = 0
    u^3 + (-25u + 24u) - (24 * 5) = 0
    (u^3 - 25u) + (24u - [24 * 5]) = 0
    u(u^2 - 25) + 24(u - 5) = 0
    u(u^2 - 5^2) + 24(u - 5) = 0
    u(u + 5)(u - 5) + 24(u - 5) = 0
    (u - 5)(u * [u + 5] + 24) = 0
    (u - 5)(u^2 + 5u + 24) = 0
    Suppose u - 5 = 0
    u - 5 = 0
    u - 5 + 5 = 0 + 5
    u = 5
    Remember, u = 2^x
    2^x = 5
    log(2^x) = log(5)
    x * log(2) = log(5)
    x * log(2) / log(2) = log(5) / log(2)
    x = log_2(5)
    x1 = log_2(5)
    Suppose u^2 + 5u + 24 = 0
    1 * u^2 + 5 * u + 24 = 0
    Let a = 1, b = 5, c = 24
    u = (-b +/- sqrt[b^2 - 4 * a * c]) / (2 * a)
    u = (-5 +/- sqrt[5^2 - 4 * 1 * 24]) / (2 * 1)
    u = (-5 +/- sqrt[25 - 96]) / (2)
    u = (-5 +/- sqrt[-71]) / 2
    u = (-5 +/- sqrt[71 * (-1)]) / 2
    u = (-5 +/- sqrt[71] * sqrt[-1]) / 2
    u = (-5 +/- sqrt[71] * i) / 2
    Remember, u = 2^x
    2^x = (-5 +/- sqrt[71] * i) / 2
    ln(2^x) = ln([-5 +/- sqrt(71) * i] / 2)
    x * ln(2) = ln([-5 +/- sqrt(71) * i] / 2)
    x * ln(2) / ln(2) = ln([-5 +/- sqrt(71) * i] / 2) / ln(2)
    x * 1 = ln([-5 +/- sqrt(71) * i] / 2) / ln(2)
    x = ln([-5 + sqrt(71) * i] / 2) / ln(2), or x = ln([-5 - sqrt(71) * i] / 2) / ln(2)
    x2 = ln([-5 + sqrt(71) * i] / 2) / ln(2)
    x2 = log_2([-5 + sqrt(71) * i] / 2)
    x2 = log_2(-5 + sqrt[71] * i) - log_2(2)
    x2 = log_2(-5 + sqrt[71] * e^[i * tau / 4]) - 1
    x3 = ln([-5 - sqrt(71) * i] / 2) / ln(2)
    x3 = ln(-1 * [5 + sqrt(71) * i] / 2) / ln(2)
    x3 = ln(-1) / ln(2) + ln([5 + sqrt(71) * i] / 2) / ln(2)
    x3 = ln(e^[i * tau / 2]) / ln(2) + log_2([5 + sqrt(71) * i] / 2)
    x3 = (i * tau / 2) * ln(e) / ln(2) + log_2(5 + sqrt[71] * i) - log_2(2)
    x3 = (i * tau / 2) * 1 / ln(2) + log_2(5 + sqrt[71] * e^[i * tau / 4]) - 1
    x3 = i * tau / (2 * ln[2]) + log_2(5 + sqrt[71] * e^[i * tau / 4]) - 1
    {x1, x2, x3}
    =
    {
    log_2(5),
    log_2(-5 + sqrt[71] * e^[i * tau / 4]) - 1,
    i * tau / (2 * ln[2]) + log_2(5 + sqrt[71] * e^[i * tau / 4]) - 1
    }

  • @RichieSarabia-ms2er
    @RichieSarabia-ms2er 16 днів тому +1

    Godbless You sir watching from Philippines 🙏🙏🙏

    • @SALogics
      @SALogics  16 днів тому +1

      Thank you so much! ❤

  • @RichieSarabia-ms2er
    @RichieSarabia-ms2er 16 днів тому +1

    Thank you so much for more uploads youtube videos like mathematics

    • @SALogics
      @SALogics  16 днів тому +1

      More to come! ❤

  • @daniellerosalie2155
    @daniellerosalie2155 14 днів тому +1

    I like this problem.

    • @SALogics
      @SALogics  14 днів тому +1

      Thanks for liking! ❤

  • @Phúc-nè123
    @Phúc-nè123 15 днів тому +2

    Let 2^x=y
    Y³-y=120
    Y³-y-120=0
    Y³-y-125+5=0
    (Y³-5³)-(y-5)=0
    (Y-5)(y²+5y+25)-(y-5)=0
    (Y-5)(y²+5y+24)=0
    Case 1
    Y-5=0
    Y=5
    2^x=5
    Log2^x=log5
    Xlog2=log5
    X=log5
    ²
    Case 2
    Y²+5y+24=0
    Delta=5²-4.1.24=25-96
    =-71

  • @acigercek
    @acigercek 3 дні тому +1

    y^3-y=125-5
    y^3-125 - (y-5)=0
    (y-5)(y^2+5y+25)=0
    y has 1 real root (y=5, then x=Ln5) and 2 complex roots (which can easily be found using the quadratic formula, then 2 complex logarithmic roots from here).

  • @walterwen2975
    @walterwen2975 17 днів тому +1

    Math Olympiad: 8ˣ - 2ˣ = 120; x =?
    8ˣ - 2ˣ - 120 = 0, [(2ˣ)³ - 5³] - (2ˣ - 5) = (2ˣ - 5)[(2ˣ)² + 5(2ˣ) + 25 - 1] = 0
    (2ˣ - 5)[(2ˣ)² + 5(2ˣ) + 24] = 0, 2ˣ > 0; (2ˣ)² + 5(2ˣ) + 24 > 0
    2ˣ - 5 = 0, 2ˣ = 5, x = log₂5 = 2.322
    The calculation was achieved on a smartphone with a standard calculator app
    Answer check:
    x = log₂5 = 2.322, 2ˣ = 5: 8ˣ - 2ˣ = (2ˣ)[(2ˣ)² - 1] = 5(25 - 1) = 120; Confirmed
    Final answer:
    x = log₂5 = 2.322