- 203
- 676 660
SALogic
India
Приєднався 21 тра 2024
Hi, Welcome to SALogic youtube channel! Where you learn Fast and Easy tricks to solve math problems. Whether you are a student learning basics or a professional looking to improve your skills , then this channel helps you a lot. We will find for you a fast and easy solution to hard and complicated problems so that the beginners can learn easily.
Thank you for support me! Write your opinion for new videos in the comments, it makes me happy and inspires me to create new math videos! Thanks for Watching!
Thank you for support me! Write your opinion for new videos in the comments, it makes me happy and inspires me to create new math videos! Thanks for Watching!
Portugal | A Nice Olympiad Math Problem
math olympiad
olympiad math
math olympiad question
math olympiad questions
math olympiad problem
math olympiad problems
olympiad math problems
algebra olympiad problems
math
maths
algebra
algebra problem
nice algebra problem
a nice algebra problem
equation
exponential equation
a nice exponential equation
radical equation
a nice radical equation
math tricks
imo
Find the value of x?
How to solve √x√4 + √x√8 = √x√16
In this video, we'll show you How to Solve Math Olympiad Question A Nice Algebra Problem √x√4 + √x√8 = √x√16 in a clear , fast and easy way. Whether you are a student learning basics or a professtional looking to improve your skills, this video is for you. By the end of this video, you'll have a solid understanding of how to solve math olympiad exponential equations and be able to apply these skills to a variety of problems.
#matholympiad #maths #math #algebra
olympiad math
math olympiad question
math olympiad questions
math olympiad problem
math olympiad problems
olympiad math problems
algebra olympiad problems
math
maths
algebra
algebra problem
nice algebra problem
a nice algebra problem
equation
exponential equation
a nice exponential equation
radical equation
a nice radical equation
math tricks
imo
Find the value of x?
How to solve √x√4 + √x√8 = √x√16
In this video, we'll show you How to Solve Math Olympiad Question A Nice Algebra Problem √x√4 + √x√8 = √x√16 in a clear , fast and easy way. Whether you are a student learning basics or a professtional looking to improve your skills, this video is for you. By the end of this video, you'll have a solid understanding of how to solve math olympiad exponential equations and be able to apply these skills to a variety of problems.
#matholympiad #maths #math #algebra
Переглядів: 156
Відео
Mexico | A Nice Olympiad Math Problem
Переглядів 1,1 тис.23 години тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
China | A Nice Olympiad Math Problem
Переглядів 80523 години тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x and y? How to ...
Poland | A Nice Olympiad Math Problem
Переглядів 1,8 тис.4 години тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of a and b? How to ...
Brazil | A Nice Olympiad Math Problem
Переглядів 1,6 тис.4 години тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
Germany | A Nice Olympiad Math Problem
Переглядів 1,5 тис.7 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
A Nice Algebra Problem | Math Olympiad | A Nice Radical Equation
Переглядів 8157 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of a? How to solve ...
A Nice Algebra Problem | Math Olympiad | A Tricky Exponential Equation
Переглядів 6579 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
A Nice Algebra Problem | Math Olympiad | Find x and y
Переглядів 1,6 тис.9 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x and y? How to ...
A Nice Algebra Problem | Math Olympiad | A Nice Radical Problem
Переглядів 2,2 тис.12 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
A Nice Algebra Problem | Math Olympiad | Algebra Equation
Переглядів 1,4 тис.12 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
Brazil | A Nice Algebra Problem | Math Olympiad
Переглядів 1,7 тис.14 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
A Nice Algebra Problem | Math Olympiad | A Nice Equation
Переглядів 2 тис.14 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
A Nice Algebra Problem | Math Olympiad | Solve for a and b
Переглядів 1,3 тис.16 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the values of a and b? How to...
A Nice Algebra Problem | Math Olympiad | A Nice Radical Equation
Переглядів 1,5 тис.16 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of a? How to solve ...
A Nice Algebra Problem | Math Olympiad | A Nice Math Equation
Переглядів 2,2 тис.19 годин тому
A Nice Algebra Problem | Math Olympiad | A Nice Math Equation
A Nice Algebra Problem | Math Olympiad | A Nice Math Problem
Переглядів 1,8 тис.19 годин тому
A Nice Algebra Problem | Math Olympiad | A Nice Math Problem
A Nice Algebra Problem | Math Olympiad | A Very Nice Equation
Переглядів 1,7 тис.21 годину тому
A Nice Algebra Problem | Math Olympiad | A Very Nice Equation
A Nice Algebra Problem | Math Olympiad | Radical Equation
Переглядів 2,1 тис.21 годину тому
A Nice Algebra Problem | Math Olympiad | Radical Equation
A Nice Algebra Problem | Math Olympiad | Exponential Equation
Переглядів 2,5 тис.День тому
A Nice Algebra Problem | Math Olympiad | Exponential Equation
A Nice Algebra Problem | Math Olympiad | A Nice Exponential Equation
Переглядів 3,6 тис.День тому
A Nice Algebra Problem | Math Olympiad | A Nice Exponential Equation
A Nice Algebra Problem | Math Olympiad | Exponential Equation
Переглядів 2,3 тис.День тому
A Nice Algebra Problem | Math Olympiad | Exponential Equation
A Nice Algebra Problem | Math Olympiad | A Nice Radical Equation
Переглядів 2 тис.День тому
A Nice Algebra Problem | Math Olympiad | A Nice Radical Equation
A Nice Algebra Problem | Math Olympiad | A Very Nice Equation
Переглядів 1,3 тис.День тому
A Nice Algebra Problem | Math Olympiad | A Very Nice Equation
A Nice Algebra Problem | Math Olympiad | Nice Exponential Equation
Переглядів 2,4 тис.День тому
A Nice Algebra Problem | Math Olympiad | Nice Exponential Equation
A Nice Algebra Problem | Math Olympiad | A Nice Cubic Equation
Переглядів 860День тому
A Nice Algebra Problem | Math Olympiad | A Nice Cubic Equation
A Nice Algebra Problem | Math Olympiad | A Nice Radical Equation
Переглядів 1,6 тис.День тому
A Nice Algebra Problem | Math Olympiad | A Nice Radical Equation
A Nice Algebra Problem | Math Olympiad | A Nice Exponential Equation
Переглядів 4,7 тис.14 днів тому
A Nice Algebra Problem | Math Olympiad | A Nice Exponential Equation
A Nice Algebra Problem | Math Olympiad | Exponential Problem
Переглядів 1,5 тис.14 днів тому
A Nice Algebra Problem | Math Olympiad | Exponential Problem
A Nice Algebra Problem | Math Olympiad | A Nice Equation
Переглядів 2,5 тис.14 днів тому
A Nice Algebra Problem | Math Olympiad | A Nice Equation
At the point where a²-(1/2a)=0 We have difference of two squares. Or? Couldn we have used the identity (a-b)(a+b)?
We can notice that x<=2 so inside radical exists √(2-x)<=2 so x>=-2 so outside radical exists X>=0 Also x=1 is a solution to equation 1=√2-√(2-1) Now by squaring x^2=2-√(2-x) √(2-x)=2-x^2 squarig again 2-x=4-4x^2+x^4 X^4-4x^2+x+2=0 (we know x-1 is solution) R x^4. X^3. X^2. X. 1 1. 0. -4. 1 2 1. 1. 1. -3. -2 0 2. 1. 3. 3. 4. Not a root -2. 1. -1. -1 0. root So we have x^2-x-1=0 or x=1 or x=-2 rejected (<0) X3=(1+√5)/2 x4=(1-√5)/2 rejected as it is <0 If we are using x3 then √(2-x)=√(3-√5)/2=√(6-2√5)/4=1/2(√5-1) Then the outer root is √2-(√5-1)/2=√(5-√5)/2 does not satisfy equation
Amazing. I messed up calculations trying some substitutions but intorducing a square was impressive. Still after substituting a and b i woukd not square just use the power of 1/2 as square root getting √x^√y=9=3^2 √y^√x=8=2^3 Wonder if this is sufficient to get the solutions or will itnkead to omission
ua-cam.com/video/YrvZkHipU4o/v-deo.htmlsi=JjOLfow6SvhsVP4E
(2a+1)b=44-a^2 . 2a+1>=3 b=(44-a^2)/(2a+1)=(1/4)*{(-2a+1)+175/(2a+1)} (2a+1)(2a+4b-1)=175 (2a+1,2a+4b-1)=(5, 35),(7, 25)
(2a+1)b=44-a^2>0.a=1,2,3,4,5,6. (a,b)=(2,8),(3,5)
You a pro and an excellent teacher . THANK YOU!!!
ua-cam.com/video/YrvZkHipU4o/v-deo.htmlsi=JjOLfow6SvhsVP4E
a shall > 0
Muito bom. Parabens
ua-cam.com/video/YrvZkHipU4o/v-deo.htmlsi=JjOLfow6SvhsVP4E
5/a + 6/b =7 => 1+6=7 => 5/a=1 , a=5 => 6/b=6 , b=1 => 5+2=7 => 5/a=5 . a=1 => 6/b=2 , b=3
X=4
ua-cam.com/video/YrvZkHipU4o/v-deo.htmlsi=JjOLfow6SvhsVP4E
Essa eu achei difícil
mi solucion solo mirando la miniatura m=-3 ya las otras posibles soluciones las dejo para el video mi primera vista mi opcion fue el 3, pero como luego vi que el m^2 estaba antes del m^3 supuse que era un numero negativo, total m^2 siempre dara como resultado un numero positivo y al m^3 quedar negativo daria como resultado -(-x) lo cual da otro numero positivo y solo queda sumarlos XD
In3^x-2=lnx then (x-2)ln3=1lnx then x-2=1 and 3=x then x=3
Very nice! ❤
Why do you calculate again? If a+1=5, then a=4, isn't it?
Yes, it is❤
ua-cam.com/video/YrvZkHipU4o/v-deo.htmlsi=JjOLfow6SvhsVP4E
ua-cam.com/video/YrvZkHipU4o/v-deo.htmlsi=JjOLfow6SvhsVP4E
3 &4
Yes, you are right! ❤
(4 + √15)ˣ + (4 - √15)ˣ = 62 { (4 - √15)*(4 + √15) = 1 } [(4 + √15)ˣ]² - 62*(4 + √15)ˣ + 1 = 0 (4 + √15)ˣ = 31 ± √(31²-1) = 31 ± 8*√15 x = ±2
If the quadratic equation has integer coefficients and the middle coefficient is even, use the version with it halved: (-b ± √(b² - 4*a*c))/(2*a) = -b/(2*a) ± √((b/(2*a))² - (c/a)) = -(b/2) ± √((b/2)² - 1) { a = c = 1 }
Very nice! ❤
Very nice! ❤
問題にxは実数とは書いていない。だから虚数解も解としなければならない。
はい、その通りです!
무지하게 복잡하게 해설
이것이 가장 쉬운 것입니다! ❤
If doing the other stuff is not necessary, then using log to base 4 would have minimized the steps needed to solve the equation as log properties mean applying log to the appropriate base on both sides of the equation means on one side, the base and its respective log would cancel out, leaving whatever is on the exponent as another log property already drops the exponent to the front of the log and multiplied. In this case, log to base 4 will result in solving the equation with minimal steps assuming log of 24 to base 4 is it without doing anything else.
Yes, you are right! ❤
√20 √√√ root 2 π theory #
√(6-√6-x)=x 6-√(6-ⅹ)=ⅹ^2 6-ⅹ^2=√(6ーx) 36ー12x^2+x^4-=6-x x^4-12x^2+x= -30 x(x^3-12x+1)=-30 if x=1 x^3-12x+1=10 1*(10) = 10 if x=2 x^3-12x+1=- -15 2*(-15) = -30 OK! if x=3 x^3-12x+1=- -8 3*(-8) = -24 if x=4 x^3-12x+1=-17 4*(17) =136 if x=5 x^3-12x+1=-66 2*(66) =330 X=2
a²+2ab+b²=44+b²-b Only b=5 and b=8 give perfect square. Then calculate a.
Very nice! ❤
Math Olympiad: a + b = 6(√ab); a/b =? a + b + 2(√ab) = 8(√ab), (√a + √b)² = 8(√ab), √a + √b = ± 2(√2)(⁴√ab) a + b - 2√(ab) = 4(√ab), (√a - √b)² = 4(√ab), √a - √b = ± 2(⁴√ab) 2√a = ± 2(√2)(⁴√ab) ± 2(⁴√ab) = ± 2(√2 ± 1)(⁴√ab), √a = ± (√2 ± 1)(⁴√ab) 2√b = ± 2(√2)(⁴√ab) -/+ 2(⁴√ab) = ± 2(√2 -/+ 1)(⁴√ab), √b = ± (√2 -/+ 1)(⁴√ab) (√a)/(√b) = √(a/b) = (√2 ± 1)/(√2 -/+ 1) = [(√2 ± 1)(√2 ± 1)]/[(√2 -/+ 1)(√2 ± 1)] = [(√2 ± 1)²]/(2 - 1) = (3 ± 2√2), a/b = (3 ± 2√2)² = 9 ± 12√2 + 8 = 17 ± 12√2
Very nice! ❤
x^4-12x^2-x+30=0 x=-2 16-48+2+30=0
3:38, not 4, but 2😊
2² = 4 Dear! ❤
@SALogics b=2 so 2 is correct ❤
I see. b^2 is correct ❤
(-a)^1/a=4 , (-1/a)^-1/a=2^2 , -1/a=2 then a=-1/2
Very nice! ❤
у=44/х, х+44/х-20=0. *х х²-20х+44=0. D=400-44*4=400-176=300-76=270-6=264. √D=2√66 x=(20±22√66)/2. x₁=10+11√66⇒y₁=20-10-11√66=10-11√66⇒(x₁;y₁)=(10+11√66;10-11√66); x₂=10-11√66⇒y₂=20-10+11√66=10+11√66⇒(x₂;y₂)=(10-11√66;10+11√66).
Very nice! ❤
4^x=24 log(4^x)=log(24) x×log(4)=log(24) x=log(24)÷log(4) x=2.29248125...
Very nice! ❤
خودتو نمودی و حلش نکردی
The answer is incorrect
Please, share what is the correct answer! ❤
@SALogics no solution İt is the correct answer
rearrange the eq to: b = [44-a^2] / [2a + 1]. since both a, b > 0 a <= 6. Only options a =2,3 give integer solutions for b (8,5). This might be an easier solve.
Very nice! ❤
2,8 just by putting a=2 and solving for b, if b comes to be a positive integer, its the correct answer
Very nice! ❤
44 is small. Just try A from 1 til 6.
Very nice! ❤
nice
Thank you so much! ❤
Very easy
Yes, you are right! ❤
x + y = 20 ← this is the sum S xy = 44 ← this is the product P x & y are the solution of the following equation: a² - Sa + P = 0 a² - 20a + 44 = 0 Δ = (- 20)² - (4 * 44) = 400 - 176 = 224 = 2 * 112 = 2 * 2 * 56 = 2 * 2 * 4 * 14 = 16 * 14 a = (20 ± 4√14)/2 a = 10 ± 2√14 First solution: x = 10 + 2√14 y = 10 - 2√14 Second solution: x = 10 - 2√14 y = 10 + 2√14
Very nice! ❤
You can simplify a bit from 7:07. y^2 - y + 1 - (y + 1)(y - 1)^2 = 0 y^2 - (y - 1) - (y - 1)^2*(y + 1) = 0 y^2 - (y - 1)[1 + (y - 1)(y + 1)] = 0 y^2 - (y - 1)[1 + y^2 - y + y - 1] = 0 y^2 - (y - 1)(y^2) = 0 y^2(1 - [y - 1]) = 0 y^2(1 - y + 1) = 0 y^2(2 - y) = 0 y^2 = 0 or 2 - y = 0 y = +/-sqrt(0) or 2 - y + y = 0 + y y = 0 or 2 = y y = 0 or y = 2 y^3 = 0^3 or y^3 = 2^3 y^3 = 0 or y^3 = 8 Since x = y^3, x = 0 or x = 8 Only 8 is a solution to sqrt(1 + sqrt[1+x]) = cbrt(x).
Very nice! ❤
8 is the only solution. If you plug -1 or 0 into the equation, you'll find they are not solutions.
Yes, you are right! ❤
Not an olympiad question at all.
Fully agree
Are you sure! ❤
x=(_/x)^(_/x) Domain: x[>=]0 Let n=_/x, n²=x n²=nⁿ ln(n²)=ln(nⁿ) 2[ln(n)]=n[ln(n)] n[ln(n)]-2[ln(n)]=0 [ln(n)](n-2)=0 ln(n)=0 n=e⁰ n=1 _/x=1 x=1 ❤ n-2=0 n=2 _/x=2 x=4 ❤
Very nice! ❤
x=4
1 and 4
Plug 2 you get sqart of 6 - sqart sqart of 6+2 = sqart 6 - sqart sqart 8 = sqart 6-2=2
And x=2
Very nice! ❤
why it cannt be (1,44/3)
got it
because 44/3 is not an integer! ❤
Слишком просто. А если произведение x и y равнялось 41 вместо предложенного 44? Сделайте нестандартное решение.
Очень хорошее предложение! ❤
22 & -2 But quest may be wrong.
22 * -2 = -44
Hi I said that because when I tried on my tablet calculator didn’t match the answer. But now I will certainly try on a different system.
Ok, I will check them
Obviously x^2 >= 5 let y^2= x+5 then x^2 - 5=y y^2-x = x^2-y x^2-y^2+x-y = 0 (x-y) (x+y+1) = 0 (x^2-x-5)(x^2+x-4) = 0 now we will use quadratic formula and condition x^2 >= 5 to get roots.
Very Nice! ❤
It's a classic. There's a trick here. Square it up. you will get a quadratic equation with respect to 5 (five) with the parameter X. Solve it. The discriminant will be an exact square (2X+1). After that, solve the resulting 4 quadratic equations.
Very Nice! ❤
X=1
Yes, you are right! But what about the other solution? ❤
@SALogics I am +70 it's just a fun for me. I never try to use pen pencil and any calculator.
@@cabasantbab May you live long! ❤ The other solution is x = 4
@SALogics thnks
4a^2+8ab+4b=176 4a^2-1+4b(2a+1)=175 (2a-1)(2a+1)+4b(2a+1)=175
Very Nice! ❤