SALogic
SALogic
  • 203
  • 676 660
Portugal | A Nice Olympiad Math Problem
math olympiad
olympiad math
math olympiad question
math olympiad questions
math olympiad problem
math olympiad problems
olympiad math problems
algebra olympiad problems
math
maths
algebra
algebra problem
nice algebra problem
a nice algebra problem
equation
exponential equation
a nice exponential equation
radical equation
a nice radical equation
math tricks
imo
Find the value of x?
How to solve √x√4 + √x√8 = √x√16
In this video, we'll show you How to Solve Math Olympiad Question A Nice Algebra Problem √x√4 + √x√8 = √x√16 in a clear , fast and easy way. Whether you are a student learning basics or a professtional looking to improve your skills, this video is for you. By the end of this video, you'll have a solid understanding of how to solve math olympiad exponential equations and be able to apply these skills to a variety of problems.
#matholympiad #maths #math #algebra
Переглядів: 156

Відео

Mexico | A Nice Olympiad Math Problem
Переглядів 1,1 тис.23 години тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
China | A Nice Olympiad Math Problem
Переглядів 80523 години тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x and y? How to ...
Poland | A Nice Olympiad Math Problem
Переглядів 1,8 тис.4 години тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of a and b? How to ...
Brazil | A Nice Olympiad Math Problem
Переглядів 1,6 тис.4 години тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
Germany | A Nice Olympiad Math Problem
Переглядів 1,5 тис.7 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
A Nice Algebra Problem | Math Olympiad | A Nice Radical Equation
Переглядів 8157 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of a? How to solve ...
A Nice Algebra Problem | Math Olympiad | A Tricky Exponential Equation
Переглядів 6579 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
A Nice Algebra Problem | Math Olympiad | Find x and y
Переглядів 1,6 тис.9 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x and y? How to ...
A Nice Algebra Problem | Math Olympiad | A Nice Radical Problem
Переглядів 2,2 тис.12 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
A Nice Algebra Problem | Math Olympiad | Algebra Equation
Переглядів 1,4 тис.12 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
Brazil | A Nice Algebra Problem | Math Olympiad
Переглядів 1,7 тис.14 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
A Nice Algebra Problem | Math Olympiad | A Nice Equation
Переглядів 2 тис.14 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of x? How to solve ...
A Nice Algebra Problem | Math Olympiad | Solve for a and b
Переглядів 1,3 тис.16 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the values of a and b? How to...
A Nice Algebra Problem | Math Olympiad | A Nice Radical Equation
Переглядів 1,5 тис.16 годин тому
math olympiad olympiad math math olympiad question math olympiad questions math olympiad problem math olympiad problems olympiad math problems algebra olympiad problems math maths algebra algebra problem nice algebra problem a nice algebra problem equation exponential equation a nice exponential equation radical equation a nice radical equation math tricks imo Find the value of a? How to solve ...
A Nice Algebra Problem | Math Olympiad | A Nice Math Equation
Переглядів 2,2 тис.19 годин тому
A Nice Algebra Problem | Math Olympiad | A Nice Math Equation
A Nice Algebra Problem | Math Olympiad | A Nice Math Problem
Переглядів 1,8 тис.19 годин тому
A Nice Algebra Problem | Math Olympiad | A Nice Math Problem
A Nice Algebra Problem | Math Olympiad | A Very Nice Equation
Переглядів 1,7 тис.21 годину тому
A Nice Algebra Problem | Math Olympiad | A Very Nice Equation
A Nice Algebra Problem | Math Olympiad | Radical Equation
Переглядів 2,1 тис.21 годину тому
A Nice Algebra Problem | Math Olympiad | Radical Equation
A Nice Algebra Problem | Math Olympiad | Exponential Equation
Переглядів 2,5 тис.День тому
A Nice Algebra Problem | Math Olympiad | Exponential Equation
A Nice Algebra Problem | Math Olympiad | A Nice Exponential Equation
Переглядів 3,6 тис.День тому
A Nice Algebra Problem | Math Olympiad | A Nice Exponential Equation
A Nice Algebra Problem | Math Olympiad | Exponential Equation
Переглядів 2,3 тис.День тому
A Nice Algebra Problem | Math Olympiad | Exponential Equation
A Nice Algebra Problem | Math Olympiad | A Nice Radical Equation
Переглядів 2 тис.День тому
A Nice Algebra Problem | Math Olympiad | A Nice Radical Equation
A Nice Algebra Problem | Math Olympiad | A Very Nice Equation
Переглядів 1,3 тис.День тому
A Nice Algebra Problem | Math Olympiad | A Very Nice Equation
A Nice Algebra Problem | Math Olympiad | Nice Exponential Equation
Переглядів 2,4 тис.День тому
A Nice Algebra Problem | Math Olympiad | Nice Exponential Equation
A Nice Algebra Problem | Math Olympiad | A Nice Cubic Equation
Переглядів 860День тому
A Nice Algebra Problem | Math Olympiad | A Nice Cubic Equation
A Nice Algebra Problem | Math Olympiad | A Nice Radical Equation
Переглядів 1,6 тис.День тому
A Nice Algebra Problem | Math Olympiad | A Nice Radical Equation
A Nice Algebra Problem | Math Olympiad | A Nice Exponential Equation
Переглядів 4,7 тис.14 днів тому
A Nice Algebra Problem | Math Olympiad | A Nice Exponential Equation
A Nice Algebra Problem | Math Olympiad | Exponential Problem
Переглядів 1,5 тис.14 днів тому
A Nice Algebra Problem | Math Olympiad | Exponential Problem
A Nice Algebra Problem | Math Olympiad | A Nice Equation
Переглядів 2,5 тис.14 днів тому
A Nice Algebra Problem | Math Olympiad | A Nice Equation

КОМЕНТАРІ

  • @samueladler9080
    @samueladler9080 2 години тому

    At the point where a²-(1/2a)=0 We have difference of two squares. Or? Couldn we have used the identity (a-b)(a+b)?

  • @dan-florinchereches4892
    @dan-florinchereches4892 4 години тому

    We can notice that x<=2 so inside radical exists √(2-x)<=2 so x>=-2 so outside radical exists X>=0 Also x=1 is a solution to equation 1=√2-√(2-1) Now by squaring x^2=2-√(2-x) √(2-x)=2-x^2 squarig again 2-x=4-4x^2+x^4 X^4-4x^2+x+2=0 (we know x-1 is solution) R x^4. X^3. X^2. X. 1 1. 0. -4. 1 2 1. 1. 1. -3. -2 0 2. 1. 3. 3. 4. Not a root -2. 1. -1. -1 0. root So we have x^2-x-1=0 or x=1 or x=-2 rejected (<0) X3=(1+√5)/2 x4=(1-√5)/2 rejected as it is <0 If we are using x3 then √(2-x)=√(3-√5)/2=√(6-2√5)/4=1/2(√5-1) Then the outer root is √2-(√5-1)/2=√(5-√5)/2 does not satisfy equation

  • @dan-florinchereches4892
    @dan-florinchereches4892 8 годин тому

    Amazing. I messed up calculations trying some substitutions but intorducing a square was impressive. Still after substituting a and b i woukd not square just use the power of 1/2 as square root getting √x^√y=9=3^2 √y^√x=8=2^3 Wonder if this is sufficient to get the solutions or will itnkead to omission

    • @beiranvand4066
      @beiranvand4066 3 години тому

      ua-cam.com/video/YrvZkHipU4o/v-deo.htmlsi=JjOLfow6SvhsVP4E

  • @epsom2024
    @epsom2024 9 годин тому

    (2a+1)b=44-a^2 . 2a+1>=3 b=(44-a^2)/(2a+1)=(1/4)*{(-2a+1)+175/(2a+1)} (2a+1)(2a+4b-1)=175 (2a+1,2a+4b-1)=(5, 35),(7, 25)

  • @epsom2024
    @epsom2024 9 годин тому

    (2a+1)b=44-a^2>0.a=1,2,3,4,5,6. (a,b)=(2,8),(3,5)

  • @Arshadee
    @Arshadee 9 годин тому

    You a pro and an excellent teacher . THANK YOU!!!

    • @beiranvand4066
      @beiranvand4066 3 години тому

      ua-cam.com/video/YrvZkHipU4o/v-deo.htmlsi=JjOLfow6SvhsVP4E

  • @benjaminchang1382
    @benjaminchang1382 12 годин тому

    a shall > 0

  • @nelson101
    @nelson101 12 годин тому

    Muito bom. Parabens

    • @beiranvand4066
      @beiranvand4066 3 години тому

      ua-cam.com/video/YrvZkHipU4o/v-deo.htmlsi=JjOLfow6SvhsVP4E

  • @michallesz2
    @michallesz2 17 годин тому

    5/a + 6/b =7 => 1+6=7 => 5/a=1 , a=5 => 6/b=6 , b=1 => 5+2=7 => 5/a=5 . a=1 => 6/b=2 , b=3

  • @cabasantbab
    @cabasantbab 21 годину тому

    X=4

    • @beiranvand4066
      @beiranvand4066 3 години тому

      ua-cam.com/video/YrvZkHipU4o/v-deo.htmlsi=JjOLfow6SvhsVP4E

  • @carlosterra9287
    @carlosterra9287 День тому

    Essa eu achei difícil

  • @peluwesner1277
    @peluwesner1277 День тому

    mi solucion solo mirando la miniatura m=-3 ya las otras posibles soluciones las dejo para el video mi primera vista mi opcion fue el 3, pero como luego vi que el m^2 estaba antes del m^3 supuse que era un numero negativo, total m^2 siempre dara como resultado un numero positivo y al m^3 quedar negativo daria como resultado -(-x) lo cual da otro numero positivo y solo queda sumarlos XD

  • @فیروزاهنگری
    @فیروزاهنگری День тому

    In3^x-2=lnx then (x-2)ln3=1lnx then x-2=1 and 3=x then x=3

  • @tingsuji8331
    @tingsuji8331 День тому

    Why do you calculate again? If a+1=5, then a=4, isn't it?

    • @SALogics
      @SALogics День тому

      Yes, it is❤

    • @beiranvand4066
      @beiranvand4066 3 години тому

      ua-cam.com/video/YrvZkHipU4o/v-deo.htmlsi=JjOLfow6SvhsVP4E

    • @beiranvand4066
      @beiranvand4066 3 години тому

      ua-cam.com/video/YrvZkHipU4o/v-deo.htmlsi=JjOLfow6SvhsVP4E

  • @cabasantbab
    @cabasantbab День тому

    3 &4

    • @SALogics
      @SALogics День тому

      Yes, you are right! ❤

  • @oahuhawaii2141
    @oahuhawaii2141 2 дні тому

    (4 + √15)ˣ + (4 - √15)ˣ = 62 { (4 - √15)*(4 + √15) = 1 } [(4 + √15)ˣ]² - 62*(4 + √15)ˣ + 1 = 0 (4 + √15)ˣ = 31 ± √(31²-1) = 31 ± 8*√15 x = ±2

    • @oahuhawaii2141
      @oahuhawaii2141 2 дні тому

      If the quadratic equation has integer coefficients and the middle coefficient is even, use the version with it halved: (-b ± √(b² - 4*a*c))/(2*a) = -b/(2*a) ± √((b/(2*a))² - (c/a)) = -(b/2) ± √((b/2)² - 1) { a = c = 1 }

    • @SALogics
      @SALogics День тому

      Very nice! ❤

    • @SALogics
      @SALogics День тому

      Very nice! ❤

  • @gaiatetuya92
    @gaiatetuya92 2 дні тому

    問題にxは実数とは書いていない。だから虚数解も解としなければならない。

    • @SALogics
      @SALogics День тому

      はい、その通りです!

  • @次野先生
    @次野先生 2 дні тому

    무지하게 복잡하게 해설

    • @SALogics
      @SALogics День тому

      이것이 가장 쉬운 것입니다! ❤

  • @EC4U2C_Studioz
    @EC4U2C_Studioz 2 дні тому

    If doing the other stuff is not necessary, then using log to base 4 would have minimized the steps needed to solve the equation as log properties mean applying log to the appropriate base on both sides of the equation means on one side, the base and its respective log would cancel out, leaving whatever is on the exponent as another log property already drops the exponent to the front of the log and multiplied. In this case, log to base 4 will result in solving the equation with minimal steps assuming log of 24 to base 4 is it without doing anything else.

    • @SALogics
      @SALogics День тому

      Yes, you are right! ❤

  • @DanToomey-j8n
    @DanToomey-j8n 2 дні тому

    √20 √√√ root 2 π theory #

  • @武中
    @武中 2 дні тому

    √(6-√6-x)=x 6-√(6-ⅹ)=ⅹ^2 6-ⅹ^2=√(6ーx) 36ー12x^2+x^4-=6-x x^4-12x^2+x= -30 x(x^3-12x+1)=-30 if x=1 x^3-12x+1=10 1*(10) = 10 if x=2 x^3-12x+1=- -15 2*(-15) = -30 OK! if x=3 x^3-12x+1=- -8 3*(-8) = -24 if x=4 x^3-12x+1=-17 4*(17) =136 if x=5 x^3-12x+1=-66 2*(66) =330 X=2

  • @fbj9648
    @fbj9648 2 дні тому

    a²+2ab+b²=44+b²-b Only b=5 and b=8 give perfect square. Then calculate a.

  • @walterwen2975
    @walterwen2975 2 дні тому

    Math Olympiad: a + b = 6(√ab); a/b =? a + b + 2(√ab) = 8(√ab), (√a + √b)² = 8(√ab), √a + √b = ± 2(√2)(⁴√ab) a + b - 2√(ab) = 4(√ab), (√a - √b)² = 4(√ab), √a - √b = ± 2(⁴√ab) 2√a = ± 2(√2)(⁴√ab) ± 2(⁴√ab) = ± 2(√2 ± 1)(⁴√ab), √a = ± (√2 ± 1)(⁴√ab) 2√b = ± 2(√2)(⁴√ab) -/+ 2(⁴√ab) = ± 2(√2 -/+ 1)(⁴√ab), √b = ± (√2 -/+ 1)(⁴√ab) (√a)/(√b) = √(a/b) = (√2 ± 1)/(√2 -/+ 1) = [(√2 ± 1)(√2 ± 1)]/[(√2 -/+ 1)(√2 ± 1)] = [(√2 ± 1)²]/(2 - 1) = (3 ± 2√2), a/b = (3 ± 2√2)² = 9 ± 12√2 + 8 = 17 ± 12√2

  • @rasulovamahfuza397
    @rasulovamahfuza397 2 дні тому

    x^4-12x^2-x+30=0 x=-2 16-48+2+30=0

  • @tingsuji8331
    @tingsuji8331 2 дні тому

    3:38, not 4, but 2😊

  • @فیروزاهنگری
    @فیروزاهنگری 3 дні тому

    (-a)^1/a=4 , (-1/a)^-1/a=2^2 , -1/a=2 then a=-1/2

  • @zawatsky
    @zawatsky 3 дні тому

    у=44/х, х+44/х-20=0. *х х²-20х+44=0. D=400-44*4=400-176=300-76=270-6=264. √D=2√66 x=(20±22√66)/2. x₁=10+11√66⇒y₁=20-10-11√66=10-11√66⇒(x₁;y₁)=(10+11√66;10-11√66); x₂=10-11√66⇒y₂=20-10+11√66=10+11√66⇒(x₂;y₂)=(10-11√66;10+11√66).

  • @Ronaldocr7-p4h
    @Ronaldocr7-p4h 3 дні тому

    4^x=24 log(4^x)=log(24) x×log(4)=log(24) x=log(24)÷log(4) x=2.29248125...

  • @siamakzaheri1706
    @siamakzaheri1706 3 дні тому

    خودتو نمودی و حلش نکردی

  • @DJ.Nihad6174
    @DJ.Nihad6174 3 дні тому

    The answer is incorrect

    • @SALogics
      @SALogics 2 дні тому

      Please, share what is the correct answer! ❤

    • @DJ.Nihad6174
      @DJ.Nihad6174 День тому

      @SALogics no solution İt is the correct answer

  • @srinivasanlakshminarasimha9282

    rearrange the eq to: b = [44-a^2] / [2a + 1]. since both a, b > 0 a <= 6. Only options a =2,3 give integer solutions for b (8,5). This might be an easier solve.

  • @Sp-A101
    @Sp-A101 3 дні тому

    2,8 just by putting a=2 and solving for b, if b comes to be a positive integer, its the correct answer

  • @chao541
    @chao541 3 дні тому

    44 is small. Just try A from 1 til 6.

  • @narsinhapotdar7215
    @narsinhapotdar7215 3 дні тому

    nice

    • @SALogics
      @SALogics 2 дні тому

      Thank you so much! ❤

  • @jtechnicalgaming7831
    @jtechnicalgaming7831 4 дні тому

    Very easy

    • @SALogics
      @SALogics 2 дні тому

      Yes, you are right! ❤

  • @key_board_x
    @key_board_x 4 дні тому

    x + y = 20 ← this is the sum S xy = 44 ← this is the product P x & y are the solution of the following equation: a² - Sa + P = 0 a² - 20a + 44 = 0 Δ = (- 20)² - (4 * 44) = 400 - 176 = 224 = 2 * 112 = 2 * 2 * 56 = 2 * 2 * 4 * 14 = 16 * 14 a = (20 ± 4√14)/2 a = 10 ± 2√14 First solution: x = 10 + 2√14 y = 10 - 2√14 Second solution: x = 10 - 2√14 y = 10 + 2√14

  • @stpat7614
    @stpat7614 4 дні тому

    You can simplify a bit from 7:07. y^2 - y + 1 - (y + 1)(y - 1)^2 = 0 y^2 - (y - 1) - (y - 1)^2*(y + 1) = 0 y^2 - (y - 1)[1 + (y - 1)(y + 1)] = 0 y^2 - (y - 1)[1 + y^2 - y + y - 1] = 0 y^2 - (y - 1)(y^2) = 0 y^2(1 - [y - 1]) = 0 y^2(1 - y + 1) = 0 y^2(2 - y) = 0 y^2 = 0 or 2 - y = 0 y = +/-sqrt(0) or 2 - y + y = 0 + y y = 0 or 2 = y y = 0 or y = 2 y^3 = 0^3 or y^3 = 2^3 y^3 = 0 or y^3 = 8 Since x = y^3, x = 0 or x = 8 Only 8 is a solution to sqrt(1 + sqrt[1+x]) = cbrt(x).

  • @stpat7614
    @stpat7614 4 дні тому

    8 is the only solution. If you plug -1 or 0 into the equation, you'll find they are not solutions.

    • @SALogics
      @SALogics 2 дні тому

      Yes, you are right! ❤

  • @mathijs1987j
    @mathijs1987j 4 дні тому

    Not an olympiad question at all.

  • @ChavoMysterio
    @ChavoMysterio 4 дні тому

    x=(_/x)^(_/x) Domain: x[>=]0 Let n=_/x, n²=x n²=nⁿ ln(n²)=ln(nⁿ) 2[ln(n)]=n[ln(n)] n[ln(n)]-2[ln(n)]=0 [ln(n)](n-2)=0 ln(n)=0 n=e⁰ n=1 _/x=1 x=1 ❤ n-2=0 n=2 _/x=2 x=4 ❤

  • @adgf1x
    @adgf1x 4 дні тому

    x=4

  • @Cookie69g
    @Cookie69g 4 дні тому

    Plug 2 you get sqart of 6 - sqart sqart of 6+2 = sqart 6 - sqart sqart 8 = sqart 6-2=2

  • @HarkiratSingh-lg2ng
    @HarkiratSingh-lg2ng 4 дні тому

    why it cannt be (1,44/3)

  • @ckoque1
    @ckoque1 4 дні тому

    Слишком просто. А если произведение x и y равнялось 41 вместо предложенного 44? Сделайте нестандартное решение.

    • @SALogics
      @SALogics 2 дні тому

      Очень хорошее предложение! ❤

  • @cabasantbab
    @cabasantbab 4 дні тому

    22 & -2 But quest may be wrong.

  • @mauriziograndi1750
    @mauriziograndi1750 4 дні тому

    Hi I said that because when I tried on my tablet calculator didn’t match the answer. But now I will certainly try on a different system.

    • @SALogics
      @SALogics 4 дні тому

      Ok, I will check them

  • @raghvendrasingh1289
    @raghvendrasingh1289 5 днів тому

    Obviously x^2 >= 5 let y^2= x+5 then x^2 - 5=y y^2-x = x^2-y x^2-y^2+x-y = 0 (x-y) (x+y+1) = 0 (x^2-x-5)(x^2+x-4) = 0 now we will use quadratic formula and condition x^2 >= 5 to get roots.

  • @meirlev8498
    @meirlev8498 5 днів тому

    It's a classic. There's a trick here. Square it up. you will get a quadratic equation with respect to 5 (five) with the parameter X. Solve it. The discriminant will be an exact square (2X+1). After that, solve the resulting 4 quadratic equations.

  • @cabasantbab
    @cabasantbab 5 днів тому

    X=1

    • @SALogics
      @SALogics 4 дні тому

      Yes, you are right! But what about the other solution? ❤

    • @cabasantbab
      @cabasantbab 4 дні тому

      @SALogics I am +70 it's just a fun for me. I never try to use pen pencil and any calculator.

    • @SALogics
      @SALogics 4 дні тому

      @@cabasantbab May you live long! ❤ The other solution is x = 4

    • @cabasantbab
      @cabasantbab 4 дні тому

      @SALogics thnks

  • @rasulovamahfuza397
    @rasulovamahfuza397 5 днів тому

    4a^2+8ab+4b=176 4a^2-1+4b(2a+1)=175 (2a-1)(2a+1)+4b(2a+1)=175