one of the best integrals you'll solve

Поділитися
Вставка
  • Опубліковано 29 лис 2024

КОМЕНТАРІ •

  • @zunaidparker
    @zunaidparker 5 місяців тому +31

    One of the best integrals we'll watch YOU solve 😉

  • @CM63_France
    @CM63_France 5 місяців тому +9

    Hi,
    "Terribly sorry about that" : 2:43 , 6:44 , 11:01 ,
    "ok, cool" : 4:51 , 5:00 , 6:00 , 10:32 , 11:05 , 12:08 .

  • @JustSomePersonOnline
    @JustSomePersonOnline 5 місяців тому +21

    Guys i think he's terribly sorry about that

  • @primenumberbuster404
    @primenumberbuster404 5 місяців тому +8

    Hey, we did this in complex Analysis last year!!!! 😮

  • @Sugarman96
    @Sugarman96 5 місяців тому +7

    4:21 I feel like I've said this before, but whatever. To me, this just screams Fourier transform. With the cosine, you have the real part of the inverse Fourier transform evaluated at t=1, with the original function being e^-2|t|, with its transform being 4/(w^2+4). By playing with the constants to make it for with the inverse Fourier transform, you get pi/2 time the original function at t=1, which is the result you got to via contouring.

    • @maths_505
      @maths_505  5 місяців тому +4

      Like I said .....FOR MINAS TIRITH!!!!

    • @Sugarman96
      @Sugarman96 5 місяців тому

      @@maths_505 You get me there

    • @brenobelloc8617
      @brenobelloc8617 5 місяців тому

      ​@@maths_505 the greatest reason to solve that.

  • @leroyzack265
    @leroyzack265 5 місяців тому +5

    I see everyone proposed so many ways to reach the result but I think contour integration remains one of the best tools for solving hard integrals.

    • @maths_505
      @maths_505  5 місяців тому +4

      Hard integrals: (exist)
      Contour integration: GO BACK TO THE SHADOWS!
      FLAME OF UDÛN!!!

    • @leroyzack265
      @leroyzack265 5 місяців тому +1

      @@maths_505 it simply annihilate that seeming hardness as fire reduces wood to aches.

  • @DD-ce4nd
    @DD-ce4nd 5 місяців тому

    A nice generalisation is: int_0^infty cos(1-1/x) \(x+1/x)^n dx becomes 2F0( {n/2,1-n/2},{}, -1/4) / (2^n*( n/2-1)!) for n>0 and an even integer. Also, int_0^infty sin(1-1/x) \(x+1/x)^n dx becomes 2F0( {n/2-1/2,3/2-n/2},{}, -1/4) / (2^n*( n/2-1/2)!) for n > 0 and an odd integer. (both equations multiplied by Pi/e^2)

  • @florianc2598
    @florianc2598 5 місяців тому +3

    For the hw I find pi/(sqrt(2)*exp(sqrt(2))

    • @krisbrandenberger544
      @krisbrandenberger544 5 місяців тому

      Yes. The process is pretty much the same as in the problem given in the video. Completing the square in the denominator and applying the same u-sub will result in u^2+4.

  • @ben_adel3437
    @ben_adel3437 5 місяців тому +1

    After the cos(x)/x^2+4 part i stopped understanding what's happening but someday i do wanna learn about the integral for complex functions

  • @balubaluhehe2002
    @balubaluhehe2002 5 місяців тому +4

    could you do a video on how and why contour integration and the residue theorem works?

    • @maxvangulik1988
      @maxvangulik1988 5 місяців тому

      i would like to see such a video. I'm still unclear on what a laurent series is.

  • @danielespinosa869
    @danielespinosa869 5 місяців тому

    Answer 13:21 is pi/((sqrt(2)*e^(sqrt(2)))

  • @MikeB-q8v
    @MikeB-q8v 5 місяців тому

    Ingenious as always!

  • @appybane8481
    @appybane8481 5 місяців тому

    Answer for homework: pi/(2e^sqrt2)

  • @slavinojunepri7648
    @slavinojunepri7648 5 місяців тому +1

    Excellent

  • @gregoriuswillson4153
    @gregoriuswillson4153 5 місяців тому +1

    Hello sir thank u so much for giving us such a quality content , could u post discussion regarding glasser master theorem i think it will be interesting .Thanks

  • @MrWael1970
    @MrWael1970 5 місяців тому

    Thanks for smart tricks for solving such integrals. It should be possible to be solved in real domain rather than contour integration.

  • @theelk801
    @theelk801 5 місяців тому +1

    love me a good contour integral

  • @BoringExtrovert
    @BoringExtrovert 5 місяців тому +4

    How exactly does one choose the contour? Every time I see such integrals, I don’t understand why such a contour is chosen

    • @Khamul7618
      @Khamul7618 5 місяців тому +7

      You are free to choose the most convenient one. Usually you choose the contour so that it contains a single pole. And having convenient parametrization is also nice -- arcs are easily parametrized as z=rho e^(i phi) which simplifies estimation of the integral (you want any additional integrals equal zero). In fact, there is no simple answer to your question. You just try one contour and if it doesn't help you evaluate your integral you try another one. The more experience you have, the more often your guesses will be correct. Integrals are always just like this.

    • @yodastar1237
      @yodastar1237 5 місяців тому

      Because Contour usually for this case considers the geometry of the integral like in previous problem. So like in this form you see, you will get an answer that involve pi or e or something like that due to the radians and symmetry.

  • @larinzonbruno9126
    @larinzonbruno9126 5 місяців тому +1

    Gorgeous way to solve! Hail Kamal, thundermind of Lothlorien!!. Kamal, I think that I noticed in the first transformation from x to 1/x, you have the negative of the limit switch, another from the cos function symmetry, another from the differential element dx, is that correct?

    • @maths_505
      @maths_505  5 місяців тому +1

      The cos function is even so we don't get a negative from there my friend.

    • @larinzonbruno9126
      @larinzonbruno9126 5 місяців тому

      @@maths_505 thank you! I understood the opposite, my respect! Thundermind of Lothlorien!

  • @ahmedlutfi4894
    @ahmedlutfi4894 4 місяці тому

    What is the reason behind reversing the integral interval when changing the realm of x 1/x?

  • @rishabhshah8754
    @rishabhshah8754 5 місяців тому +2

    I have been trying to solve int^1_0 ln(1-x)/x dx without using the fact that ζ(2) = π^2/6. Is this possible?

  • @qetzing
    @qetzing 5 місяців тому +1

    Regarding 0:42, what exactly is the difference between a transformation as shown here and a regular substitution with u?

    • @maths_505
      @maths_505  5 місяців тому +3

      No difference whatsoever

  • @holyshit922
    @holyshit922 5 місяців тому

    Two substitutions
    u = 1/x
    and
    v = u-1/u
    gave me integral
    \int_{0}^{\infty}{\frac{cos(v)}{v^2+4}dx}
    which can be calculated fe with Laplace transform
    You did it for integral which looks almost the same
    ua-cam.com/video/bmZoPIfZLsw/v-deo.html

  • @abdealrazakmekebret6385
    @abdealrazakmekebret6385 5 місяців тому

    Wonderful professor, really wonderful. Please, professor, how can I reach this level of skill? Advise me what i should stady

    • @maths_505
      @maths_505  5 місяців тому +1

      Just keep doing math and you'll probably end up better than me

    • @abdealrazakmekebret6385
      @abdealrazakmekebret6385 5 місяців тому

      @@maths_505 Thank you sir and thank you for your humility Thank you, I hope that God will guide you to Islam

  • @davode76166
    @davode76166 5 місяців тому

    Why don't you do double and triple integrals? They are quite interesting!🎉

  • @PritamMondal-ps4cu
    @PritamMondal-ps4cu 5 місяців тому

    Bro may I know what books do you follow for complex analysis...like intregals including branch cuts and branch points ?

    • @maths_505
      @maths_505  5 місяців тому +1

      Complex analysis by gamelin is a classic

    • @PritamMondal-ps4cu
      @PritamMondal-ps4cu 5 місяців тому

      @@maths_505 thanks for replying

  • @Samir-zb3xk
    @Samir-zb3xk 5 місяців тому +1

    if im being completely honest i have no clue how to do complex analysis but I got the same result using laplace transform lol

    • @maths_505
      @maths_505  5 місяців тому +1

      The Laplace transform is a subject of complex analysis.

    • @Samir-zb3xk
      @Samir-zb3xk 5 місяців тому

      ​@@maths_505yea i meant the stuff you were doing with poles and contours, i learned laplace transform when studying differential equations

  • @giuseppemalaguti435
    @giuseppemalaguti435 5 місяців тому

    Fino al 5 Min è semplice...poi non conosco quelle soluzioni..il risultato arriva anche con feyman

  • @maxvangulik1988
    @maxvangulik1988 5 місяців тому

    I=int[0,♾️](cos(x-1/x)/(x+1/x)^2)dx
    x-1/x=u
    x+1/x=sqrt(u^2+4)
    x=(u+sqrt(u^2+4))/2
    du=(1+1/x^2)dx=(x+1/x)dx/x
    x->♾️, u->♾️
    x->0, u->-♾️
    I=1/2•int[-♾️,♾️]((u+sqrt(u^2+4))cos(u)/(u^2+4)^(3/2))du
    I1=1/2•int[-♾️,♾️](ucos(u)/(u^2+4)^(3/2))du
    I2=1/2•int[-♾️,♾️](cos(u)/(u^2+4))du
    I=I1+I2
    U=cos(u)
    dV=(u/(u^2+4)^(3/2))du
    dU=-sin(u)
    V=-(u^2+4)^-1/2
    I1=-1/2•int[-♾️,♾️](sin(u)/sqrt(u^2+4))du
    odd•even=odd, so I1=0
    I=I2=1/2•int[-♾️,♾️](cos(u)/(u^2+4))du
    even•even=even, so
    I=int[0,♾️](cos(u)/(u^2+4))du
    b=u/2
    db=du/2
    I=1/2•int[0,♾️](cos(2b)/(b^2+1))db
    cos(x)=sum[n=0,♾️](x^(2n)/(2n)!)
    I=1/2•int[0,♾️](sum[n=0,♾️]((2b)^(2n)/((2n)!(b^2+1))))db
    I=sum[n=0,♾️](2^(2n-1)/(2n)!•int[0,♾️](b^(2n)/(b^2+1))db)
    O=b
    A=1
    H=sqrt(b^2+1)
    tan(Ø)=b
    sec^2(Ø)=1/(b^2+1)
    sec^2(Ø)dØ=db
    I=sum[n=0,♾️](2^(2n-1)/(2n)!•int[0,pi/2](sin^2n(Ø)cos^-(2n+4)(Ø))dØ)
    int[0,pi/2](sin^(2u-1)(x)cos^(2v-1)(x))dx=ẞ(u,v)
    I=sum[n=0,♾️](2^(2n-1)ẞ(n+1/2,n+5/2)/(2n)!)
    ẞ(u,v)=gamma(u)gamma(v)/gamma(u+v)
    ẞ(n+1/2,n+5/2)=gamma(n+1/2)gamma(n+5/2)/gamma(2n+3)
    =(n+3/2)(n+1/2)gamma^2(n+1/2)/gamma(2n+3)
    I=pi/2•sum[n=1,♾️]((2n^2+n)(n-1)!!^2)/((2n)!^2))
    I=pi/2•sum[n=0,♾️]((2n^2+5n+3)n!!^2/(2n+2)!^2)
    im not up to snuff on my double-factorial-squared sums, so I'll just watch the video now

  • @Jalina69
    @Jalina69 5 місяців тому +1

  • @petterituovinem8412
    @petterituovinem8412 5 місяців тому

    29th

  • @arkadelik
    @arkadelik 5 місяців тому +1

    real okay cool moment

  • @zunaidparker
    @zunaidparker 5 місяців тому

    This video has 69 likes at the moment. I'm so conflicted...

  • @mutenfuyael3461
    @mutenfuyael3461 5 місяців тому

    Fool of you to think I'll solve this integrale