A golden ratio integral

Поділитися
Вставка
  • Опубліковано 28 лис 2024

КОМЕНТАРІ • 36

  • @Sugarman96
    @Sugarman96 5 місяців тому +11

    Very satisfying integral. The fact that η(2) popped in both sub integrals is nice and makes you think about whether or not it could have been arrived at from that integral before splitting it.

  • @DD-ce4nd
    @DD-ce4nd 5 місяців тому +4

    This integral possesses beautiful properties indeed. When replacing the golden ratio by a generic power z in C, we obtain the closed form: I(z) = (z^2 +1)/ (12*z) * Pi^2. And this yields the elegant reflexion formula I(z) = I(1/z). Its only zero seems to occur when z = +/- i 🙂

  • @CM63_France
    @CM63_France 5 місяців тому +6

    Hi,
    The final result can be simplified into : sqrt(5) * pi^2/12
    "ok, cool" : 2:31 , 2:58 , 11:26 ,
    "terribly sorry about that" : 3:55 , 4:23 , 6:05 , 6:08 , 10:10 , 10:13 , 13:11 , 14:18 .

    • @maths_505
      @maths_505  5 місяців тому +2

      @@CM63_France damn I was terribly sorry a terribly lot this time 😂

  • @slavinojunepri7648
    @slavinojunepri7648 5 місяців тому +6

    This is a salivating beauty, and I cannot think of another way of describing it.

  • @MichaelDruggan
    @MichaelDruggan 5 місяців тому +1

    You could simplify even more at the end since 1/(phi -1) is just phi. It turns into 3*phi-phi^2 = 3*phi - (phi + 1) = 2*phi - 1 = sqrt(5)

  • @somerandomletters
    @somerandomletters 5 місяців тому +2

    **slaps roof of video** this bad boy can fit so much nice cancellation taking place

  • @maxmoedough6401
    @maxmoedough6401 5 місяців тому +24

    Im so early there isn't even audio

  • @leroyzack265
    @leroyzack265 5 місяців тому +4

    This was gorgeous 😍. Thanks for the amazing result.

  • @الْمَذْهَبُالْحَنْبَلِيُّ-ت9ذ

    15:30 Here you could save a few steps by substituting phi - 1 = 1/phi.
    You end up with: (1/phi^2 + 1) / (1/phi) = (phi^2 + 1) / phi = 1/phi + phi = phi - 1 + phi = 2*phi - 1 = 1.

  • @AntAnkh
    @AntAnkh 5 місяців тому +5

    Where do you find such integrals? They're all really cool. Do you have any textbooks you can recommend which have integrals like this?

  • @Chris_387
    @Chris_387 5 місяців тому +9

    π²√5/12

    • @RalfStephan
      @RalfStephan 5 місяців тому

      Claude 3.5 finds it too from the phi fraction

  • @insouciantFox
    @insouciantFox 5 місяців тому +5

    1/(φ-1)=φ
    (3-φ)φ= 3φ-φ-1=2φ-1

    • @maths_505
      @maths_505  5 місяців тому

      @@insouciantFox I know but I just loved that final form 😭

    • @waarschijn
      @waarschijn 5 місяців тому

      φ + 1/φ is even nicer

    • @venkatamarutiramtarigoppul2078
      @venkatamarutiramtarigoppul2078 5 місяців тому

      Now i am starting a war 😅😅sqrt 5* pi^2 /12 is lot better. Kust kidding any form in maths is as beautiful &satisfactory as the other one

  • @MrWael1970
    @MrWael1970 5 місяців тому

    Thank you.

  • @MRGamesStreamer
    @MRGamesStreamer 5 місяців тому +1

    How many years work in integral department (Years of experience)

  • @esphix
    @esphix 3 місяці тому

    13:47 gamma(z) should be gamma(s), no? Also at 11:10 shouldn't it be t^(phi-2)?

  • @ruffifuffler8711
    @ruffifuffler8711 5 місяців тому

    Take it one step further by relating 'phi to kewness of fruit trees, thereby expanding the integral repetoir of Golden Ratios.

  • @Арлимъ
    @Арлимъ 5 місяців тому +1

    Nice!

  • @77Chester77
    @77Chester77 5 місяців тому

    11:13 shouldn't it be "phi -2" instead of "phi -1"? Cool result nevertheless.

  • @trelosyiaellinika
    @trelosyiaellinika 5 місяців тому

    Mashallah! I've said it once, whoever has given you the name Kamal (perfection) has depicted you exactly! Please thank him/her for me.😊

    • @maths_505
      @maths_505  5 місяців тому +3

      @@trelosyiaellinika you're message has been conveyed to my mother 😂

  • @guy_with_infinite_power
    @guy_with_infinite_power 5 місяців тому

    Just out of curiosity, Where do you get these integrals? Like what book/s?

    • @maths_505
      @maths_505  5 місяців тому +2

      I mostly just make em up or find them on the internet. Math stackexchange is awesome 🔥🔥

  • @giuseppemalaguti435
    @giuseppemalaguti435 5 місяців тому

    Si arriva facilmente a I=Σ((-1)^k/(k+1))π/sinπ(k+1)Φ..poi,boh..tu hai usato un metodo diverso .io ,invece, ho usato..la serie logaritmica,la funzione beta,e poi la gamma reflection.. poi mi sono bloccato..ah ah...forse ho trovato l'errore:non si può sviluppare in serie logaritmica perché ln(1+x)...x,tra 0 e 1, è maggiore di 1..

  • @zunaidparker
    @zunaidparker 5 місяців тому

    It's cheating to put phi in the intergrand I feel. Not surprising that phi pops out in the result.

    • @maths_505
      @maths_505  5 місяців тому +1

      It's cheating only if the solution did not make use of the properties of phi. Phi at the end is simply our reward😂

  • @petterituovinem8412
    @petterituovinem8412 5 місяців тому

    17th

  • @MinecraftForever_l
    @MinecraftForever_l 5 місяців тому +1

    Σ author💅