FFT Tutorial

Поділитися
Вставка
  • Опубліковано 30 гру 2024

КОМЕНТАРІ •

  • @smartereveryday
    @smartereveryday 12 років тому +59

    I thought this was a really great video.

  • @M1A2_Abrams_MBT
    @M1A2_Abrams_MBT 8 років тому +42

    THIS is how you teach engineering. I'm actually motivated to learn now. A lot of professors just lecture in the wrong way... Thanks Tektronix. You've earned a like and subscribe.

  • @pepe6666
    @pepe6666 8 років тому +234

    this is great. its like the world's most awkward fourier transform video.

    • @arisilias8787
      @arisilias8787 4 роки тому +4

      hahahahahahahahahaha, right from the thubnail

  • @erwinvb09
    @erwinvb09 11 років тому +1

    Thanks for the simple explanation of what fourier transforms are. All other videos on the subject just start of with a lot of math with the assumption I already know what it's use is.

  • @KozakBlade
    @KozakBlade 2 роки тому

    i just wanted to make a simple tuner... why am I learning FFT, but actually out of all the articles I've read and tried to understand this is by far the most concise explanation.

  • @ShizzleMyChizzle
    @ShizzleMyChizzle 11 років тому +10

    THIS was the kind of channel I was looking for!
    Well done guys you present it really well and make things easy to understand!

  • @stevematson4808
    @stevematson4808 2 роки тому

    YES!
    finally a demonstration that shows real-world examples. Thank you.

  • @andreabelian1861
    @andreabelian1861 4 роки тому +1

    This video was one of the best explained about FFT. thank you

  • @radioactivoso
    @radioactivoso 2 роки тому

    Old video with golden explanation. Thanks

  • @otiebrown9999
    @otiebrown9999 5 років тому +6

    Well done!
    Simple, short and clear!
    Thanks!

  • @AMANSHARMA-bl5ui
    @AMANSHARMA-bl5ui 4 роки тому

    this is the best video on fft in youtube.

  • @lindsayheyes925
    @lindsayheyes925 4 роки тому

    That's a great explanation for non-mathematicians.
    Someone did a similar demo at Madley Satellite Station about 30 years ago for visitors. What BT were doing with FFT, TDR (like radar for the insides of wires), packet switching and Lee-Moore routing was mind-blowing to a layman - like detecting a broken line in India from England and instantly by-passing it by the cheapest route. And of course they were using your kit!
    FFT is everywhere now, in everyone's devices, even the noise-cancelling headphones on your kids' Christmas lists - and yet people still think maths isn't cool... Whaaat????

  • @kl1nk0r
    @kl1nk0r 11 років тому +13

    Well, actually the FFT is an algorithm to perform a very fast DFT, which is the discrete fourier transformation, which is the descrete version of the fourier transformation, which in turn is, what you have explained in this video ;-) Just to be more precise with the terms FFT, DFT, and fourier transformation here.

    • @sub-harmonik
      @sub-harmonik 10 років тому +1

      ya i came here looking 4 fft stuff not an explanation of dft

    • @matthewjackson9615
      @matthewjackson9615 5 років тому

      @@sub-harmonik Well not the case for me, Seb-harmonik, Simon K has piqued my interest. I must discover what DFT is all about.

  • @sahil_jasani
    @sahil_jasani Рік тому

    that's how you should teach students. great respect for you guys.

  • @anonimuso
    @anonimuso 5 років тому +3

    7 years later this is still an amazingly cool (in a way only nerds would understand) video.

  • @originuk
    @originuk 11 років тому

    Thanks! Great to see a simple demo of how to interpret harmonic distortion and how a bunch of sine waves can create different shaped waves ( at the appropriate intervals and amplitude, of course!)

  • @MrTacoGuy1000
    @MrTacoGuy1000 3 роки тому

    I wonder if they knew this would get half a million views on day, good job guys

  • @zeorxofline
    @zeorxofline 8 років тому +2

    Very simple.I wish if my teacher was like you guys.
    Many thanks

  • @satishshinde8074
    @satishshinde8074 2 роки тому +1

    Tony was like the unnecessary higher frequency sine wave riding on the main signal :D

  • @kmatter11
    @kmatter11 11 років тому +9

    "Wow i cant believe that. That's excellent. That's really handy. Did you hear that? Wow."

    • @theengineer9910
      @theengineer9910 5 років тому +1

      It would only be entertaining if it was owen wilson

  • @DailyFrankPeter
    @DailyFrankPeter 7 років тому

    Mind blown. I mean it's *just* maths, but the very fact I understand this kind of maths is mind blowing.

  • @raresmircea
    @raresmircea 6 років тому

    Both dudes were on point. Fun and informative, great job!

  • @rich7447
    @rich7447 8 років тому

    Haven't done an FFT since college, but wish you could have been there 20 years ago to explain how they work.

  • @davidwilkie9551
    @davidwilkie9551 6 років тому

    Good demo of what a practical device does, it's in the "real" world, directly related to basic elements of material existence.
    Can this simple technical identification of phenomena be scaled to extended to the Quantum Fields Mechanism in Chemistry and Physics.

  • @ClayREZify
    @ClayREZify 9 років тому +9

    One stares at the face of the other as the other speaks directly to the cam most of the time. lol

  • @rich1051414
    @rich1051414 7 років тому

    The explanation was great for explaining how to transform FFT back into the original signal, but not so much on transforming the waveform into FFT, as far as the math is concerned.

  • @johnpacheco7906
    @johnpacheco7906 10 років тому +1

    Hello friendly, I taste the video a lot. He wanted to know if they have an instruction manual where they explain to me as putting the oscilloscope graphics in an USB ( Tektronix ). I am accomplishing a project of the Doppler Effect and I wish to capture data when there is frequency drift in the spectrum analyzer.

  • @4665726e
    @4665726e 6 років тому

    I didn't expect learning about FFTs to be so funny... I am pleasantly surprised

  • @ronaldestebancasallasrestr5260
    @ronaldestebancasallasrestr5260 7 років тому

    Very good video, many thanks, my question is: this can be done with the Laplace transform ????

  • @syedhaniraza
    @syedhaniraza 8 років тому +164

    stop interfering the guy whose explaining. otherwise great stuff.

    • @aces3261
      @aces3261 8 років тому +33

      stop complaining over nothing. enjoy free knowledge

    • @Kabodanki
      @Kabodanki 7 років тому +14

      it's not nothing, someone interrupting an explanation makes hard for the knowledge to pass.

    • @thabonhlapo9323
      @thabonhlapo9323 6 років тому

      Fck. That guy is soooooooo annoying man. Hell.

    • @jayantabanik2751
      @jayantabanik2751 5 років тому

      @@thabonhlapo9323 I thought he is gay!!!

  • @Chocolatiste
    @Chocolatiste 7 років тому

    That sine turning into a square at 3:00 is pretty much what a tenor sax looks like on fft.

  • @bangbi6527
    @bangbi6527 8 років тому

    dear, i have a question for u. output of the iFFT process, is it modulated signal with high frequency? because i see it is multied with e^(-2piFt)

  • @EnergeticWaves
    @EnergeticWaves 4 роки тому

    are you saying the top wave is the sum of all the waves at the bottom? I don't really understand.

    • @robkling2243
      @robkling2243 4 роки тому

      Yes I think that is the point. Any signal can be represented as a sum of sine waves with varying amplitude and frequency. On the scope, each peak on the bottom curve( frequency domain) is a frequency and amplitude of a sine wave. Successive peaks( sine waves) added together create the top wave. That is why a true sine wave has one peak in the frequency domain( bottom curve ). The later part of the video showed an issue with hardware or software used which had two peaks for a sine wave.

  • @duzirealz9469
    @duzirealz9469 4 роки тому

    I liked the vid and the humor between u 2 made it more entertaining.. thanks!
    To all you who don't like something... get a life

  • @GodOfWaaar
    @GodOfWaaar 7 років тому

    thanks guys! but imho you explained the ordinary fourier transformation and not the _fast_ fourier transformation which is fast, because of some - for me - unkown symmetry. i was looking for an explanation for this.

  • @sahidamardhi
    @sahidamardhi Рік тому

    this is such an insightful video! thanks a lot!

  • @EdwardConrad
    @EdwardConrad 11 років тому

    This was a great video! I'm programming an app dealing with sound waves. Same principles; and you explained them well!

  • @alexeykokh8240
    @alexeykokh8240 6 років тому

    Where I could read open Audio processing journals?

  • @bonbonpony
    @bonbonpony 8 років тому +3

    The title is misleading. This video has nothing to do with FFT (which is a particular algorithm of calculating the Discrete Fourier Transform quickly), but with its application to show the spectrum of a signal. The video shows how to view the spectrum on an oscilloscope, not how to do the FFT algorithm.

  • @tiberiuandrei314
    @tiberiuandrei314 8 років тому

    Good job guys, you`re explanations are really clear.

  • @OriginalFreeThinker
    @OriginalFreeThinker 8 років тому

    Great stuff guys. Thanks for the video. Learned something new today

  • @beakf1
    @beakf1 9 років тому +6

    I thought the video was great and a bit of humor breaks up the boring stuff. Good job lads.

  • @ricardoasaavedra
    @ricardoasaavedra 9 років тому +99

    I appreciate the effort, but the second guy keeps interrupting the main guy that is talking all the time. So annoying!

    • @izetassky
      @izetassky 9 років тому +2

      +Ricardo Saavedra main guy should let him to speak. the video became more clear and energic.

    • @Dubb06
      @Dubb06 8 років тому +1

      I kinda get what he's trying to do but it's like he's trying too hard to be entertaining. He needs to know when to add a quip here and there.

    • @kudoamv
      @kudoamv 6 років тому +4

      I also have an Idea we can use FFT on both of the guys and can separate their voices.
      xD

    • @matthewjackson9615
      @matthewjackson9615 5 років тому

      Well, what kind of behavior do you expect from a Burger King dropout ? He's as dumb as the day is long and couldn't pour water out of a boot.

  • @РоманВасилів-к5ц
    @РоманВасилів-к5ц 8 років тому

    Fft never been so easy thank you very much guys !!

  • @devinakin8171
    @devinakin8171 9 років тому +1

    Nice job guys. Thanks for the effort.

  • @doublej118jc
    @doublej118jc 10 років тому

    Good presentation, gets to the absolute basics of what an FFT IS.

  • @gblikas
    @gblikas 9 років тому

    @2:50 Not being annoying or anything, but sine typically starts at a value of zero.

  • @zeemusiccompany
    @zeemusiccompany 7 років тому +2

    Great video,

  • @farfisa5
    @farfisa5 7 років тому

    Great overhead tutorial. Thanks guys. This is wonderful for folks like me who want a quick, "What is this?" answer.

  • @mathmagicproductions431
    @mathmagicproductions431 3 роки тому

    Thank you for explaining that so well!

  • @jeffking898
    @jeffking898 10 років тому +58

    The best part of this tutorial is the responses about the useless guy on the right.....too funny, lmfao!!

    • @matthewjackson9615
      @matthewjackson9615 5 років тому

      Have you ever noticed how Newton's third law always seems to hold ? For every action , there is an opposite and equal reaction. In this case, the more sophisticated the equipment, the more ignorant the operator of the equipment ( i.e. the useless guy on the right, the one that obtained a PhD in Stupidity). Everything balances in life doesn't it ?

  • @paulkafig5788
    @paulkafig5788 8 років тому +10

    OK video, but the title is misleading. You've explained the difference between a time and frequency signal domain and why it's useful. An FFT is an algorithm for calculating a DFT. Please consider changing the title of your video. Thanks.

  • @THOREAU79
    @THOREAU79 4 роки тому

    Excellent video!

  • @razawarrior
    @razawarrior 4 роки тому

    This is a really good video.

  • @gamccoy
    @gamccoy 11 років тому +22

    Ditch the partner. Otherwise, it was a good video.

  • @brocochocili
    @brocochocili 6 років тому +3

    "and this isn't just photoshop? this is real?" lol

  • @ZeroZ30o
    @ZeroZ30o 6 років тому

    I can't believe that it's so good wow

  • @jeganl6094
    @jeganl6094 5 років тому

    That was great. Thank you both.

  • @michifuu9929
    @michifuu9929 9 років тому

    Saved my life today. Jaja someone said ancient devices jajaja but those are exactly like the ones at my faculty so you really saved me :)

  • @lefermier10
    @lefermier10 9 років тому

    I wish the teachers I have were as interesting and not boring as you guys are

    • @HDRNX
      @HDRNX 8 років тому +1

      +lefermier10 I think you forgot a comma. :)

  • @la7yka
    @la7yka 5 років тому +1

    FFT tutorials are at best with an unfocused camera.

  • @SheilMehtaYNWA
    @SheilMehtaYNWA 9 років тому +2

    Thanks so much! great job and really helpful!

  • @xxxxxtcxxxxxx
    @xxxxxtcxxxxxx 9 років тому +3

    Very good tutorial. Could have posted with good video resolution.

  • @bbmbb52
    @bbmbb52 7 років тому +1

    you earned my subscription! 👏👍

  • @ashusingh6517
    @ashusingh6517 3 роки тому

    Amazing video

  • @davidbrown4868
    @davidbrown4868 3 роки тому

    Nice job. Thank you.

  • @hoopydood
    @hoopydood 5 років тому +1

    can someone give the right guy a high five on the face

  • @ayandas8757
    @ayandas8757 6 років тому +2

    the left dude kept it interesting!

  • @vileguile4
    @vileguile4 11 років тому

    Does lithium work against spectrum analyzing personality disorder? :-o

  • @nassehk
    @nassehk 7 років тому

    Can you FFT that guy's out? The real signal is coming from left.

  • @gamesongraphics7643
    @gamesongraphics7643 7 років тому

    really great video, the interfering is great

  • @palmsprings1628
    @palmsprings1628 8 років тому

    Thanks guys !!

  • @tianyang5241
    @tianyang5241 7 років тому

    没听懂英文,大概明白啥意思:应该是说矩形波可以是由很多种频率的波合成的,越接近矩形波频率的波的频率分量越大, 它们的频率能量是一个向下的曲线

  • @nano7586
    @nano7586 7 років тому

    Fuck this is so interesting if you love to play around with FM synthesizers.

  • @nadersad
    @nadersad 7 років тому

    Great Job! many thanks

  • @cali-co6428
    @cali-co6428 7 років тому

    i can imagine the left guy playing tomba 2 and says "I would prefer if you can be quiet" to the other guy.

  • @owensjohn
    @owensjohn 12 років тому

    Great video guys!

  • @marcthenarc868
    @marcthenarc868 7 років тому

    Great video guys.

  • @Monogrammaton
    @Monogrammaton 12 років тому

    I thought this was going to explain how to calculate FFT, ie. the numerical method :( Instead it's about plain old Fourier Transforms...

  • @djwinger2003
    @djwinger2003 12 років тому

    You're confusing mathematical operations with oscilloscopes, which possess an FFT button. They're explaining what it does. Tektronix are an oscilloscope manufacturer.

  • @owensjohn
    @owensjohn 12 років тому

    I got squared up by Tony and Ian!

  • @cynikalX
    @cynikalX 12 років тому

    Thanks for saying what we were all thinking :)

  • @AdityaKadamMechanical
    @AdityaKadamMechanical 6 років тому

    Thanks guys :)

  • @phuphatoonkamtoey7888
    @phuphatoonkamtoey7888 7 років тому

    Thanks mate.

  • @jimmoriarty1050
    @jimmoriarty1050 8 років тому

    I loved it !

  • @suhasmahesh3250
    @suhasmahesh3250 7 років тому

    Dude Bro. You amazing!!

  • @bravoelf
    @bravoelf 10 років тому +1

    Nice Videos. Pls get an HD Camera (it'll help)

  • @mrnosenz1806
    @mrnosenz1806 8 років тому

    great Tutor !
    Could you please upload tutorial about how to code FFT on arduino please and arduino coding in general ?
    Cheers

  • @aichi337
    @aichi337 6 років тому

    crazy drawing skillz

  • @jessecardoso5529
    @jessecardoso5529 3 роки тому

    Very good..

  • @Sam-gn6og
    @Sam-gn6og 10 років тому

    not every signal can be represented by bunch of sine waves, only periodic ones

    • @miikalehtimaki1136
      @miikalehtimaki1136 10 років тому

      Wrong, the original definition of Fourier transform is defined over the full real number space. (In other words, infinitely long signals) In practice though, real-life signals are often sampled and always finite. That enables us to treat them as periodic signals(one period having the length of the full sampled signal) and to use FFT on them.

    • @Sam-gn6og
      @Sam-gn6og 10 років тому

      Miika Lehtimäki
      For Fourier series that is, not transforms, Fourier series are the mapping of the more general complex functions to real ones. See the T period in the expression of coefficient. The generalization of series is the Riemann integral. Can you prove that all functions in real function spaces , have an existent Fourier transform (what's the name of theorem or related one)

    • @DenisKreshikhin
      @DenisKreshikhin 9 років тому

      ***** Fourier's transform works properly with finite energy signals and it's enough for engineering purposes. But you are right Fourier transform is very complex theme and it has roots in algebraic property of functional spaces.

    • @Sam-gn6og
      @Sam-gn6og 9 років тому +1

      xXxBladeStormxXx
      The transform is a distribution that maps from one domain "time" to "frequency". The expression of the signal in the frequency domain must exist and the integral must exist, not every function, can be represented in the integral form. Fourier series approximate the signal as the sum of sine waves in the time domain. Mathematically, in the fourier transform if the function "signal" isn't integrable and doesn't satisfy the dirichlet condition and bouded , it's fourier transform is undefined. Nonetheless, integrals can be approximated numerically, that's where the FTT comes in. I was speaking mathematically, but feel free to correct me if you still don't think it's correct.

    • @xXxBladeStormxXx
      @xXxBladeStormxXx 9 років тому

      ***** I am a physics student, I use the Fourier Transform every day and even use the dirac delta version of it. I never once said all functions have a transform. Of course Dirichlet conditions need to be satisfied for convergence.
      I said: *" You can represent non periodic signals as well using the Fourier Transform"*
      Which was in reply to your statement that only periodic signals can be represented using sines. This is false. You can map non periodic signals as well using a continuous frequency distribution.
      I don't think you realize the difference between the *Fourier Series* and the *Fourier Transform*.
      The video is misleading as well since the FFT is an *algorithm* for calculating the DFT and what they are describing here is basically the Fourier Series.

  • @KSCHULTZ824
    @KSCHULTZ824 6 років тому

    I love you guys

  • @denisewallace4662
    @denisewallace4662 5 років тому

    Hilarious and informative! Thanks, guys!

  • @KobiCohenArazi
    @KobiCohenArazi 4 роки тому

    cool guys!

  • @FWDSlip
    @FWDSlip 8 років тому

    Excellent stuff,
    Thanks

  • @charithaheshan1048
    @charithaheshan1048 10 років тому +9

    Thanks for the free videos , ignore the idiots who are complaining

  • @fractalnomics
    @fractalnomics 8 років тому

    thank you

  • @GiomPanot
    @GiomPanot 9 років тому +4

    super guys ! ;-)

  • @JasonXavier-rk6kl
    @JasonXavier-rk6kl 3 роки тому

    The Best !!!!!!!

  • @clementparayre2088
    @clementparayre2088 5 років тому

    thanks