Where are magnitude and phase in the output of the FFT?

Поділитися
Вставка
  • Опубліковано 3 гру 2024

КОМЕНТАРІ • 49

  • @MarkNewmanEducation
    @MarkNewmanEducation  2 роки тому +7

    Please support the making of these videos:
    www.patreon.com/MarkNewman (monthly)
    paypal.me/MarkHNewmam (one-time)

  • @thePavuk
    @thePavuk 7 місяців тому +4

    I just discovered this channel. I love that style of old tv shows that make sense, not that flashy "behold our 4D presentation and effects".

  • @derekbenham4374
    @derekbenham4374 Рік тому +6

    I just discovered your videos as I'm preparing for my PhD competency exam in Electrical Engineering. Like you my professor left me with more questions than answers in my signals and systems class. Thank you for your great videos, they're helping it all come together!

    • @MarkNewmanEducation
      @MarkNewmanEducation  Рік тому +2

      AMAZING! Thank you so much for writing. I wish you the best of luck in your exam and if I can help you out with any questions you may have, I would be happy to do so. I've just released my 2nd book in a series on the Fourier Transform. The books take readers systematically through all the core concepts of the Fourier Series and Fourier Transform, using the same intuitive approach I use in my videos. I wonder if it might be useful for you. Here is the link howthefouriertransformworks.com/book-launch.html

  • @fern132007
    @fern132007 Рік тому +4

    You are simply an amazing teacher. I wish we could clone you and put one of you in every school.

  • @A-mt4zy
    @A-mt4zy 6 місяців тому

    This is the best explanation I have found on youtube. Thank you so much.

  • @madanjit123
    @madanjit123 Рік тому

    Great work Mark. This is one of the best video i have ever watched on signal processing. This made my understanding crystal clear. Thnaks.

  • @diegossina
    @diegossina Рік тому

    your video is of great help to understand the best how the image is created in MRI

  • @chateauxdelacasa6721
    @chateauxdelacasa6721 8 місяців тому

    had to pause the video just to congratulate you on this great explanation

  • @culater
    @culater Рік тому +1

    I love your work. THANK YOU !

  • @dilex123explorations
    @dilex123explorations 2 роки тому +3

    Great video Mark,thanks soo much.You are a blessing .

  • @faustobarbuto
    @faustobarbuto Рік тому

    Great videos, great didactics. You make learning tough concepts fun and enjoyable.

  • @מוטידרורי
    @מוטידרורי 2 роки тому

    Mark Newman You are number 1 !!!!!

    • @MarkNewmanEducation
      @MarkNewmanEducation  2 роки тому

      מוטי.. מה נשמע?? איזה כיף שאתה רואה את הסרטונים שלי.

  • @muhammadumair9214
    @muhammadumair9214 8 місяців тому

    you insist me to love math❤, while I'm physicist...... what a tremendously explanation 🎉 i had never seen such explanation.... bundle of thanks

  • @williamwelmans8648
    @williamwelmans8648 9 місяців тому

    An excellent video. Thanks!

    • @MarkNewmanEducation
      @MarkNewmanEducation  8 місяців тому

      Glad you liked it! Check out my new video at ua-cam.com/video/tjYMprOD3GI/v-deo.html for more tips on the FFT.

  • @ranjanpal7217
    @ranjanpal7217 Рік тому

    Amazing video..plase make a video on STFT, WT and HHT

  • @andrewthebladethrower8371
    @andrewthebladethrower8371 Рік тому

    magnificent, not FFT, but explanation. Concept isn’t easy to grasp, I dug deep into complex numbers and number theory, but this video nicely sums it up. Russian translation is amazing too, though I did not need it, but I know the quality of translation, which is great in this case. Спасибо!

  • @至-i9n
    @至-i9n Рік тому

    You're awesome. Thanks a lot.

  • @shubhamvnsingh3036
    @shubhamvnsingh3036 2 роки тому +1

    This is beautiful!!!

  • @longluo1788
    @longluo1788 2 роки тому

    Thank you, Mark

  • @omitbadgers5664
    @omitbadgers5664 Рік тому

    Thanks a lot!

  • @anilpokhrel8136
    @anilpokhrel8136 7 місяців тому

    Nice Explanation. I m still not getting idea on Synthesis part. If some frequency exists in signal but how we can determine when the frequency component started with what phase and when it ended with what phase. How reconstruction works.

  • @AliAhmed-tm1jf
    @AliAhmed-tm1jf 2 роки тому

    Thanks. Beautiful

  • @tsehayenegash8394
    @tsehayenegash8394 11 місяців тому

    If its possible I give you a thousand likes. Please take areal data like temperature and how to calculate amplitude and phase by using FFT in matlab

  • @solaokusanya955
    @solaokusanya955 Рік тому

    I adore you!!

  • @moulinexish
    @moulinexish 5 місяців тому

    if the signal is periodic, does the magintude refers to the frequency of the signal? Thanks for the video, very helpful

  • @kay_tj_kay
    @kay_tj_kay 4 місяці тому

    Amazing Video! I was wondering... If you want to select a frequency bin and amplify its amplitude, you have to change the amplitude of the sin (which is the height of the triangle) but if you amplify only the the amplitude of the sin and not the amplitude of cosine you will get a new result which will not the what you expect.. I am I right ?

  • @bradzepfan
    @bradzepfan 2 роки тому

    Another treasure!!!!

  • @joshuawille4802
    @joshuawille4802 Рік тому

    I fuckin love this guy

  • @balajipadimi8485
    @balajipadimi8485 Рік тому

    i implemented the whole procedure above in labview , but i'm getting the hilbert transform of the input signal as a result why?. and by making phase reverse , that is atan(a/b) giving me correct result . why???
    please respond

  • @balajipadimi8485
    @balajipadimi8485 Рік тому

    if a signal of sampling rate 1khz decomposed into various sinusoids, then what is the sampling rate or how many samples are there in the decomposed sinusoid? please answer sir

    • @CSBenivok
      @CSBenivok Рік тому

      The result of the FFT - the decomposed signals - aren't sampled. They are a definition of a sinusoid. And since you know the definition you can create as many samples as you like.

  • @manuelzambrano3481
    @manuelzambrano3481 Рік тому

    Usualy my fft give values in the order of thousands, while my signals have values around 3. Does this mean that my fft need also be normalized for amplitude or something like that?

    • @MarkNewmanEducation
      @MarkNewmanEducation  Рік тому +2

      Yes. It is sometimes useful to normalize the magnitude of the FFT by dividing it by the number of samples. The FFT works by multiplying the signal by a cosine wave at the test frequency, then adding all the results together, then doing the same for a sine wave then repeating all the above for each test frequency. It's all the adding that is giving you the large result.

  • @nareshkumar4207
    @nareshkumar4207 2 роки тому

    Because the signal is periodic one.

    • @MarkNewmanEducation
      @MarkNewmanEducation  2 роки тому +1

      No. Non-periodic signals will also give you this symmetry. Click on the preview of "Next Video" on the end screen. A clue to the answer is there. I'll be spending the next video (which I am currently editing) demonstrating exactly why this happens to ALL signals that the FFT analyses.

  • @JohnBerry-q1h
    @JohnBerry-q1h 27 днів тому

    kc

  • @sammyapsel1443
    @sammyapsel1443 2 роки тому

    A symmetric( magnitude) FFT is the result of a real signal.

    • @MarkNewmanEducation
      @MarkNewmanEducation  2 роки тому

      It is indeed, but one usually sees the kind of symmetry you are talking about with 0Hz as the centre frequency. I'll be covering that in the video after next. The symmetry shown here is around a frequency that is half of the sampling rate. There is another reason for this symmetry that one would not see if we had performed a Fourier Transform on this signal rather than a FAST Fourier Transform. CLUE: The same symmetry as this would appear in a DTFT and a DFT of the signal. Take a look at the preview of the next video for a further clue (click on the link on the end screen to see the preview).

  • @JohnBerry-q1h
    @JohnBerry-q1h 27 днів тому

    kc