Matrix^2005 from the AMATYC 2005 exam

Поділитися
Вставка
  • Опубліковано 31 гру 2024

КОМЕНТАРІ • 38

  • @hejjakaroly5850
    @hejjakaroly5850 7 місяців тому +10

    Option B barely misses to be the second solution, because M² = N², thus their even powers are equal.

  • @mikeyn7778
    @mikeyn7778 7 місяців тому +2

    I love your Bible verse at the end of each session. God Bless.

  • @devaughnjohnson8119
    @devaughnjohnson8119 7 місяців тому +5

    Can you prove / show how 0 to the power of 0 = 1?

    • @allozovsky
      @allozovsky 7 місяців тому

      As an _empty product,_ which _by convention_ is equal to the corresponding multiplicative identity (a neutral element of multiplication) in every algebraic structure. So you do not really "prove" it, since it's a _convention_ (of an empty product), but it's a fairly reasonable convention.

    • @allozovsky
      @allozovsky 7 місяців тому

      Similar to why zero factorial is also *0! = 1* (for the same reason, as an empty product, by convention), so you don't have to "prove" it either - it is simply _defined_ that way.

    • @allozovsky
      @allozovsky 7 місяців тому

      It works within the algebra of matrices as well:
      *M⁰ = (N−N)⁰ = O⁰ = I₂*
      where *I₂ = [1 0; 0 1]* is the identity *2×2* matrix (a multiplicative identity of the matrix ring of *2×2* matrices), and *O = [0 0; 0 0]* is a zero *2×2* matrix.

  • @ARounDeRoP
    @ARounDeRoP 7 місяців тому +1

    Never stop learning ❤

  • @surendrakverma555
    @surendrakverma555 7 місяців тому +1

    Excellent explanation Sir. Thanks 👍

  • @allozovsky
    @allozovsky 7 місяців тому +7

    Poor matrix *_N_* - no one cares about her at all.
    Let's make a question that involves her in a game.
    We already know what *_M²⁰⁰⁵_* is, but what is *_Mᴺ_* though?🤔

    • @adw1z
      @adw1z 7 місяців тому +2

      Matrix to the power of another matrix? 😳
      (MN)^2005 is also really easy to compute actually, as MN is diagonal;
      MN = [2^2 0 ; 0 5^2]
      ==> (MN)^2005
      = [2^4010 0 ; 0 5^4010]
      Now M doesn’t have to be ignored ^ ^

    • @allozovsky
      @allozovsky 7 місяців тому

      @@adw1z Why not? We, math lovers, can generalize any operation to whatever domain of its operands.

    • @allozovsky
      @allozovsky 7 місяців тому

      But really, why not? We already know how to evaluate matrix powers *_Aⁿ_* for _integer_ exponents *n ∈ ℤ.* What can stop us from generalizing it to _whatever_ exponents (including matrix ones) in the same way as we did for our beloved _real_ numbers?

    • @adw1z
      @adw1z 7 місяців тому +2

      @@allozovsky I've seen all kinds of weird and wonderful generalisations, but never ever a matrix to the power of a matrix. Maybe it's something to invent

    • @adw1z
      @adw1z 7 місяців тому +4

      @@allozovsky Okay I found it:
      M^N = exp(Nlog(M));
      we compute log(M) using the Taylor series expansion for log(I+(M-I)), which will give another matrix. Then multiply by N, and use Taylor series for exponential.
      There is a problem in this, which is Nlog(M) does not equal log(M)N, so there are 2 different possible answers which is quite frustrating. Also, the series for log(M) only converges if |a| < 1, where |a| is the component of M with the largest absolute value

  • @Earthzooka
    @Earthzooka 7 місяців тому

    I managed to solve it before I watch the full solution! I guess I'm not as rusty as I thought I was.

  • @Harrykesh630
    @Harrykesh630 7 місяців тому +1

    Let's Go!!

  • @omgdodogamer4759
    @omgdodogamer4759 7 місяців тому

    love these videos.

  • @WingedShell82
    @WingedShell82 7 місяців тому

    that was fun to watch :)

  • @erickaci6533
    @erickaci6533 7 місяців тому

    very educational, nice!

  • @coreymonsta7505
    @coreymonsta7505 7 місяців тому

    Awesome problem

  • @souverain1er
    @souverain1er 7 місяців тому

    Cool.

  • @josephlorizzo8997
    @josephlorizzo8997 7 місяців тому

    can't It be done with diagolanization? i mean in general, this Is a very special case

    • @adw1z
      @adw1z 7 місяців тому +4

      Yes, u can generalise this to actually find the power of any matrix. Assuming the eigenvalue decomposition exists,
      X = UDU^(-1)
      => X^n = UDU^(-1)UDU^(-1)…UDU^(-1)
      And all the U’s cancel with the U^(-1) in the middle, leaving:
      X^n = U D^n U^(-1) ,
      And D^n is easy to compute as it is just each diagonal element raised to power n

    • @josephlorizzo8997
      @josephlorizzo8997 7 місяців тому +1

      @@adw1z perfect, then what i thought was actually true, thank you very much

    • @adw1z
      @adw1z 7 місяців тому +1

      @@josephlorizzo8997 No worries, I didn't explain it greatly but the D is a diagonal matrix with eigenvalues on the leading diagonal, and U is a matrix with the corresponding eigenvectors as its columns. The assumption it exists falls under the matrix X being full rank, and so doesn't have any eigenvalues equal to 0.
      Another cool fact: for any analytic f(x) which admits a power series f(x) = a0 + a1x + a2 x^2 + ... , we get the result:
      f(X) = U f(D) U^(-1),
      where f(D) is f applied to all diagonal elements. f(x) = x^n gives us the result with the power, f(x) = e^x = 1 + x + x^2/2 + ... enables us to calculate the exponential e^X of a matrix easily. We can compute all sorts such as sin(X), arsinh(X), erf(X), X! (the factorial of a matrix using the Pi function Taylor Series (for X positive semi-definite)), log(X) == log(I + (X-I)) (with care of convergence, only for || X - I || < 1) and the list goes on... this is so cool!
      and in fact, setting f(x) = x^(-1) also works and this gives another formula to invert X:
      X^(-1) = U D^(-1) U^(-1)
      so yeah, your method can be generalised to almost anything to give such amazing results - this is why I love math so much, its full of surprises!

    • @jlmassir
      @jlmassir 7 місяців тому

      @@adw1z In this case, D = diag(sqrt(10), -sqrt(10)) (diagonal matrix with diagonal elements sqrt(10) and -sqrt(10)) because the solutions for det(M-aI) = 0 are a1 = sqrt(10) and a2 = -sqrt(10), so D^2005 = diag(sqrt(10)^2005, (-sqrt(10))^2005) = (10^1002) * D, therefore M^2005 = (10^1002) * M. For this particular problem, you don't even need to know U.

    • @adw1z
      @adw1z 7 місяців тому +1

      @@jlmassiryes that’s a very nice spot, how D^2005 brings back a multiple of itself, and so we get back a UDU^-1 term which is just M!

  • @nicolascamargo8339
    @nicolascamargo8339 7 місяців тому

    Wow

  • @AyushKumarmaurya-wx4hs
    @AyushKumarmaurya-wx4hs 7 місяців тому

    Hi sir