Bond convexity

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 26

  • @Mike-uz9hs
    @Mike-uz9hs 10 років тому +2

    I absolutely love your tutorials. I'm terrible at reading formulas; your examples help me understand them.

    • @Mike-uz9hs
      @Mike-uz9hs 10 років тому +4

      If not for these videos, I'd be spending an hour plugging in random numbers in the formula from my textbook LOL

  • @bionicturtle
    @bionicturtle  14 років тому

    @Jakers2009 thanks! Just one clarification that is common source of confusion: the gradient (slope) at x is the "dollar duration" rather than duration (note i am careful to say dollar duration when referring to slope of tangent line). b/c duration = dy/dx*-1/P; i.e., "infected" by price. So, above, the gradient is actually -436.95, i.e., -$436 per 100% (1 unit) or ~$4.36 per 1% (rise/run)

  • @bionicturtle
    @bionicturtle  14 років тому

    @Jakers2009 Actually, technical correction to my previous reply: the gradient (slope) of the above tangent line at x = 5% is -426.3. That is the "dollar duration" such that the (modified) "duration" = -426 * -1/Price = ~4.458.
    And modified duration 4.458 = Mac duration / 1 + (y/k) = 4.57 / (1+5%/2); see @4:05

  • @LeonMusicful
    @LeonMusicful 5 років тому +7

    Hi, would you please explain where the 0.5 comes from, from the first example? To calculate the time^2 weighted PV, why add the 0.5? Why not simply time^2?

  • @wymc88
    @wymc88 Рік тому +3

    Could not find the spreadsheet

  • @williamlee8514
    @williamlee8514 2 роки тому +1

    Good video. You mentioned something about opening the spreadsheet. Where is the link to open it please? I just see a video. Thanks.

  • @Jakers2009
    @Jakers2009 14 років тому

    i think your videos are great - i also resolved my past confussion regarding the duration and the 1st derivative. I realised that the 1st derivative is the gradient function and that if you take the 1st derviative of any function and then substitute the values of the x-axis at any point on that function then you would get the gradient at that point.

  • @nufcfromsg
    @nufcfromsg 2 роки тому +1

    Calculate the convexity for a three-year 3.5% coupon rate with a face value of $500,000 loan with amortised payments?
    How do I do this in excel or on paper?

  • @bionicturtle
    @bionicturtle  14 років тому

    @Jakers2009 Yes, i hadn't tackled convexity yet....hard to do quickly, hope you like?

  • @wymc88
    @wymc88 Рік тому +2

    What is the excel?

  • @aakankshakhandelwal922
    @aakankshakhandelwal922 4 роки тому +2

    Cant find spreadsheet

  • @Paata02
    @Paata02 13 років тому

    It's Great, thanks..I understood more than on lecture

  • @Fj8282haha
    @Fj8282haha Рік тому

    Thx for video. Need ur help desperately! 1st, Can u say the convexity is a friend at current situation? assuming fed rate keep going up incrementally (ie 25bps) for a short of period of time. 2nd, is 1 yr or 10 yr treasuries more vulnerable to convexity based on the current situation? 3rd, is High yield or treasuries more resilient to increasing convexity? Many thx !

  • @jessicanutter6730
    @jessicanutter6730 5 років тому

    For the Convexity, I'm confused on how you quantified the errors in both the PVs and the convexity calculation. Also, if my bond has semiannual coupons, but I'm only given an annual effective yield, what yield should I be using in the convexity calculation?

  • @marcosg2201
    @marcosg2201 10 років тому +1

    APOLOGIES FOR MY BAD ENGLISH .
    I can not find the spreadsheet . I could help locate the spreadsheet ? thank you very much

  • @utkarshpande11
    @utkarshpande11 10 років тому +1

    From what I understand, the dollar duration cannot be the actual slope of that tangent at that point as these are discrete values plotted at different pointers and for a true tangent, we need a continuous curve really. what is your take on the same sir?

    • @victorsardon3521
      @victorsardon3521 3 місяці тому +1

      I agree, the dollar duration here seems to be just an approximation of the first derivative of a hypothetical/superimposed continuous price-yield curve

  • @ne2514
    @ne2514 7 років тому

    the second method is sooooo helpful

  • @thiagosiqueira1450
    @thiagosiqueira1450 12 років тому

    Great job man, thanks for that! Just wondering if you could send me the spreadsheet or the link. cheers

  • @nutrisoyboy
    @nutrisoyboy 13 років тому

    Amazing videos! Keep it up dood!

  • @shaden746
    @shaden746 4 роки тому

    how did you plot the graph?

  • @Jakers2009
    @Jakers2009 14 років тому

    hi david your still doing the bond videos

  • @Fj8282haha
    @Fj8282haha Рік тому

    🎉🎉🎉

  • @mehj7074
    @mehj7074 7 років тому

    Thanks